Research Paper Series
Analytical Studies
Understanding Regional Differences in Work Hours
by Andrew Heisz and Sébastien LaRochelle-Côté
No. 293

Analytical Studies Research Paper Series

The Analytical Studies Research Paper Series provides for the circulation, on a pre-publication basis, of research conducted by Branch staff, visiting Fellows and academic associates. The Research Paper Series is intended to stimulate discussion on a variety of topics including labour, business firm dynamics, pensions, agriculture, mortality, language, immigration, statistical computing and simulation. Readers of the series are encouraged to contact the authors with comments, criticisms and suggestions. A list of titles appears at the end of this document.

Papers in the series are distributed to research institutes and specialty libraries. These papers can be downloaded from the Internet at www.statcan.ca.

Publications Review Committee
Analytical Studies, Statistics Canada
24th Floor, R.H. Coats Building
Ottawa, Ontario, K1A 0T6
613-951-1804
613-951-1667

Understanding Regional Differences in Work Hours

by
Andrew Heisz*
and Sébastien LaRochelle-Côté**
11F0019 No. 293
ISSN: 1205-9153
ISBN: 978-0-662-44749-8
Business and Labour Market Analysis Division
24-F, R.H. Coats Building, 100 Tunney's Pasture Driveway, Ottawa, K1A 0T6
*Statistics Canada 613-951-0748
**Statistics Canada 613-951-0803
Facsimile Number: 613-951-5403
E-mail: andrew.heisz@statcan.ca
sebastien.larochelle-cote@statcan.ca

The paper is available on Internet: www.statcan.ca
January 2007

Authors' names are listed alphabetically.
Published by authority of the Minister responsible for Statistics Canada
© Minister of Industry, 2007
All rights reserved. The content of this electronic publication may be reproduced, in whole or in part, and by any means, without further permission from Statistics Canada, subject to the following conditions: that it be done solely for the purposes of private study, research, criticism, review or newspaper summary, and/or for non-commercial purposes; and that Statistics Canada be fully acknowledged as follows: Source (or "Adapted from," if appropriate): Statistics Canada, year of publication, name of product, catalogue number, volume and issue numbers, reference period and page(s). Otherwise, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, by any means-electronic, mechanical or photocopy-or for any purposes without prior written permission of Licensing Services, Client Services Division, Statistics Canada, Ottawa, Ontario, Canada K1A 0 T6.

La version française de cette publication est disponible (n^{0} 11F0019MIF au catalogue, n^{0} 293).

Note of appreciation:

Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued cooperation and goodwill.

Digitized by the Internet Archive in 2023 with funding from University of Toronto

Table of Contents

Executive summary 4

1. Introduction 5
2. Background 6
3. Data and method 11
4. Explaining differences in average annual work hours 12
5. Explaining differences in the distribution of annual work hours 13
6. Conclusion 15
Appendix A. Description of the DFL decomposition 35
Appendix B. Description of the reverse decomposition 39
References 45

Abstract

In recent years, differences in working hours between Canada and other countries have been the focus of a substantial body of research. Much less attention has been paid to regional differences in work hours, although differences in average annual work hours between some regions are of an order of magnitude that is similar to that of the Canada-U.S. difference. Using data from the 2004 Survey of Labour and Income Dynamics, this study examines how much of differences in working time between Ontario and five other regions of Canada can be explained by 'observable' differences, including differences in union status, industrial structure, job conditions and demographic characteristics. 'Observables' were relatively efficient in explaining differences in the shares of individuals working a short year and working a full-year, full-time schedule. However, they were not very helpful in explaining differences in long work hours, did not entirely explain the larger share of short-year workers in the Atlantic and in British Columbia, and did not explain the large incidence of the 'low' full-year, full-time schedule in Quebec (between 1,500 and 1,900 hours per year). These differences that remain unexplained suggest that 'unobservable' factors (those that are difficult to observe in household surveys) also contribute to regional differences in work hours. These include incentives related to wage inequality, possible tax incentives (or disincentives) built upon progressive taxation policies, differences in macroeconomic factors, in preferences and tastes, and in the shape of institutions.

Executive summary

In recent years, international differences in work hours have been the focus of a substantial body of research. Much less attention has been paid to regional differences in working time in Canada, in spite of regional differences in average work hours that are of a magnitude that is similar to that of the Canada-U.S. difference in work hours. In this paper, we document regional differences in work hours across 6 regions of Canada for 2004, using a representative sample of 19,500 workers from the Survey of Labour and Income Dynamics. We also examine potential explanations for these differences.

Average hours per worker were lower than the Canadian average in Quebec, the Atlantic and in British Columbia. In the Atlantic and in British Columbia, low working hours were mostly the result of a larger share of individuals working short years. In Quebec, the relative prevalence of the 'low' full-year, full-time schedule (the equivalent of 29 to 37 weekly hours of work over 52 weeks) was the main difference between this province and the rest of the country (including Ontario). This suggests that Quebec-Ontario differences in average work hours, for the most part, were the result of differences in the middle of the hours distribution.

Average hours were higher than the Canadian average in Ontario, Manitoba-Saskatchewan and in Alberta. While differences in average work hours were relatively small across these regions, men in Manitoba-Saskatchewan and Alberta were relatively more likely to work more than 2,300 hours per year (long year), and women were relatively more likely to work fewer than 1,500 hours (short year). Ontario had more individuals working between 1,500 and 2,300 hours per year (full-year, full-time schedule).

What explains regional differences in working hours? International studies of working time often point to a large pool of 'observable' factors (factors that can be easily quantified in household surveys) and 'unobservable' factors (factors that are difficult to observe in household surveys) to explain international differences in work hours, which may also apply to regional differences in work hours. Unobservable factors include differences in incentives related to wage inequality as well as differences in taxes, in macroeconomic conditions, in local preferences and tastes, and in the shape of institutions. Observable factors include compositional differences in union status, industrial structure, job conditions and demographic characteristics.

Using decomposition techniques, we determine how much of the differences in work hours between Ontario and five other regions of Canada can be explained by differences in union status, industrial structure, job conditions and demographic characteristics. While observable factors were relatively inefficient in explaining differences in average work hours, they were more efficient in explaining regional differences in the share of individuals working a short year (fewer than 1,500 hours). For example, 'observables' explain almost entirely why workers in Quebec and in Manitoba-Saskatchewan were more likely to work a short year than their Ontario counterparts. In addition, one third to two thirds of the differences in the share of individuals working between 1,900 and 2,300 hours a year could be attributed to observables. Of the observables, differences in union status and demographic characteristics explained very little of the differences in work hours. Differences in industrial structure and in job conditions (including firm size and management responsibilities) explained more of the differences. However, observables did not explain differences in long work hours, did not entirely explain the larger share of workers with short years in the Atlantic and in British Columbia, and did not explain the
large incidence of the low full-year, full-time schedule in Quebec (between 1,500 to 1,900 hours per year). These remaining differences suggest that unobservable factors also contribute to exacerbate differences in regional work hours.

1. Introduction

In recent years, international differences in working hours have been the focus of a substantial body of research. These differences are interesting for several reasons. First, working time is closely related to gross domestic product (GDP) per capita, and examining differences in working time provides a better understanding of differences in aggregate economic growth (Armstrong, Harchaoui, Jackson and Takhani, 2002; Heisz and LaRochelle-Côté, 2003). Second, working time patterns have been related to a wide variety of well-being indicators at the individual and family level (Pannozzo and Colman, 2004; Higgins and Duxbury, 2002; Shields, 1999; Frederick and Fast, 1998; Williams, 2003; Scott, Tompa and Trevithick, 2004).

Much less attention has been paid to regional differences in work hours, even though, in some cases, differences in average annual work hours are of an order of magnitude that is similar to that of the Canada-U.S. difference in work hours. Furthermore, large differences in the regional distributions of work hours also exist. With the possible implications of these differences on aggregate economic growth and well-being, it appears that a detailed examination of regional working time differences is long overdue.

The causes of differences in work hours are widely debated. Generally speaking, these can be divided into 'observables' and 'unobservables' (or more accurately, factors that are difficult to observe in household surveys). The objective of this paper is to investigate regional differences in annual working hours. Beyond providing descriptive evidence, this paper also attempts to determine how much of these differences can be explained by differences in union status, industrial structure, job conditions and demographic characteristics. If all of the regional differences in work hours were explained by these 'observable' factors, then the importance of 'unobservable' factors (including preferences for leisure, institutional differences, incentives related to wage inequality and possible tax disincentives) in explaining work hours differences across regions would be overstated.

This paper uses data from the 2004 Survey of Labour and Income Dynamics and a method developed in Dinardo, Fortin and Lemieux (1996; henceforth referred to as 'DFL') to decompose the distribution of work hours. This method allows us to work with the entire density of hours to construct a counterfactual distribution of work hours that would prevail in a given region if workers had the same observational characteristics across regions.

We proceed in two stages. First, we use an Oaxaca decomposition to examine the share of the difference in average annual work hours between Ontario (the region of reference), and five other regions of Canada (the Atlantic ${ }^{1}$, Quebec, Manitoba-Saskatchewan, Alberta, and British Columbia) that can be explained by the four observable factors listed above. Second, we describe regional differences in work hours distributions, and we apply the method developed in DFL to estimate how much of the distributional differences between Ontario and the five other regions can be attributed to these four observable factors.

[^0]
2. Background

International comparisons of work hours have generated a good deal of interest among both academics and public policy makers. Multiple-country comparisons of work hours are published and updated on a regular basis (Organisation for Economic Co-operation and Development [OECD], 1995, 1997, 2001, 2004; van Ark, 2002). Examples of exhaustive studies focusing on international differences in working time also abound. Most recently, differences in work hours between the United States and Germany have been well-documented and substantially debated (Bell and Freeman, 1996, 2000, 2001; Osberg, 2001). Similarly, the cross-sectional Canada-U.S. gap in work hours has also been the focus of many studies investigating differences in living standards between the two countries (Sharpe, 2003; Fortin, 2003; Institute for Competitiveness and Prosperity, 2006) or describing the historical evolution of annual work hours (Heisz and LaRochelle-Côté, 2003). With the recent development of international sources of labour data, it is likely that inter-country comparisons of work hours will continue to generate a substantial level of attention.

International differences in work hours matter for several reasons. By definition, hours are related to GDP per capita, an often-examined indicator of economic growth (Armstrong, Harchaoui, Jackson and Takhani, 2002). Moreover, there is a growing literature on the effects of working time on well-being (Pannozzo and Colman, 2004; Higgins and Duxbury, 2002), including ill effects associated with too much work (Shields, 1999; Frederick and Fast, 1998; Williams, 2003) or lack of it (Scott, Tompa and Trevithick, 2004).

Interestingly, fewer studies focus on explaining differences in work hours within countries, even though most of the discussion above also applies to regional differences in work hours. This includes Canada, where differences in work hours across regions and provinces have been clearly highlighted in the recent past. In describing the results of a survey of individuals working in large firms, Higgins and Duxbury (2003) noted substantial differences in working time patterns across the regions of Canada. Fortin (2003) also points to substantial differences in working time patterns between Ontario and Quebec.

Regional differences in average annual work hours for the most recent year available in the 2004 Survey of Labour and Income Dynamics (SLID) are shown in Figure 1 for prime-aged workers (workers aged 25 to 54). Workers in Alberta had the most hours, with an average 1,880 hours per year among all prime-aged individuals, which is the equivalent of 36 hours per week for a fullyear worker. Workers in Manitoba-Saskatchewan and Ontario were not far behind, with 1,860 and 1,850 hours respectively. However, average hours were lower in the Atlantic (1,780 hours), British Columbia (1,790 hours) and Quebec (1,750 hours). ${ }^{2}$ In some cases, regional differences in average hours were of a similar magnitude to that of the Canada-U.S. gap in work hours. ${ }^{3}$
2. Figures for average annual hours are rounded to the nearest 10 .
3. The Survey of Labour and Income Dynamics (SLID) is the only individual-based survey that provides direct information about annual work hours. Statistics Canada also produces estimates of hours actually worked per worker and per year on a regular basis for the purpose of generating labour productivity estimates consistent with the System of National Accounts using data from various surveys of establishments and households. The estimates of annual work hours per worker also point to substantial differences in regional work hours, with relatively fewer hours being worked in Quebec and British Columbia, and more hours being worked in Alberta (CANSIM Table no. 383-0009).

While similar trends could be found for men and women, differences were even larger among men. Men in Manitoba-Saskatchewan and in Alberta worked the most hours (2,080 and 2,060 hours respectively), and men in Quebec worked fewer hours than in any other region on average (Figure 2). The number of hours worked by women in the Atlantic, Quebec and British Columbia was below the Canadian average, and women in Ontario worked the most hours with about 1,700 hours per year on average (Figure 3).

A better understanding of regional work hours also requires us to look at the distributions. In all regions, distributions are characterized by response heaping at around $1,304,1,564,1,825,1,955$, $2,086,2,190,2,294$ and 2,607 hours, corresponding to $25,30,35,37.5,40,42,44$ and 50 hours per week worked for full-year schedules. Accordingly, we compute descriptive statistics for reasonable intervals of the work hours distribution, orienting the most important response spikes near to the centre of the intervals. Table 1 shows the intervals used. We refer to work years in the 1,900 -to-2,300-hours range as an "ordinary full year, full time" schedule. "Low full year, full time" refers to the equivalent of a full-year schedule of 29 to 37 hours per week. Two schedules of short-year work are also defined. Readers should note that these schedules could be derived from various combinations of part-year and/or part-time work. Finally, there are two schedules of long-year work.

Table 2 shows the distribution of annual work hours for all regions in 2004 and also reveals interesting differences across regions. In the Atlantic, fewer individuals had an ordinary fullyear, full-time schedule. Among prime-aged men, the distribution was highly skewed: only 51.7% had an ordinary full-year, full-time schedule (compared with 67.2% of all prime-aged men in Ontario) with many other men working either a long or a short year: 12.8% of all primeaged men worked fewer than 1,100 hours, but as many as 17.5% of them worked at least 2,300 hours.

The distribution of work hours in Quebec was also quite different from other distributions: First, Quebec had a much larger share of individuals working low full-year, full-time hours (especially among women)-and a smaller share of workers with ordinary full-year, full-time hours $(43.7 \%$ vs. 57.0% in Ontario). In fact, the low full-year, full-time schedule appears to be a distinctive Quebec phenomenon, as it affected one in five working men and one in three working women in this province-nearly twice the rate observed in the five other regions. Second, the long-year schedule was less prevalent in Quebec, especially among women. Only 2.6\% of women aged 25 to 54 worked 2,300 hours and over in 2004, half the share of Ontario women working a long year.

In Ontario, 57.0% of all workers and more than two thirds of working men had an ordinary fullyear, full-time schedule-more than in any other region. As a result, Ontario had relatively fewer individuals working fewer than 1,500 hours (18.7%) and also had fewer individuals working a long year (8.4%) than in all other regions except Quebec. Similar trends could be found across gender lines.

Workers in Manitoba-Saskatchewan and in Alberta were more likely to work a long year. Compared to Ontario, these two regions also had a larger share of prime-aged women working a short year and a smaller share of workers with full-year, full-time schedules. This shows that the distribution may be different across two regions even when average hours are similar, and also suggests that an examination of differences over the entire distribution is necessary to better understand regional differences in work hours.

British Columbia had relatively fewer full-year, full-time workers and more workers with fewer than 1,500 hours compared to Ontario. Unlike the Atlantic, differences were most important among women, who were more likely to work short years than in any other region: 35.6% of working women in British Columbia worked fewer than 1,500 hours in 2004, and only 58.6% worked between 1,500 and 2,300 hours (compared with at least 62.0% in all other regions).

What explains regional differences in work hours? Some of these may be due to unobservable factors, which are not easily quantifiable by household surveys. Others may be due to observable factors-those that can be readily quantified in surveys. As stated in the introduction, our objective is to see how much of the regional differences in work hours can be explained by factors which are observables. We discuss these two groups of factors in the next few pages.

Unobservables

Unobservables (factors that are difficult to observe in household surveys) that might explain differences in work hours between the regions of Canada include incentives related to wage inequality, possible tax incentives (or disincentives) built upon progressive taxation policies, differences in macroeconomic factors, in local preferences and tastes, and in the shape of institutions. It should be noted that our objective is just to describe these factors, and not to evaluate their contribution in explaining differences in work hours.
(1) Wage inequality

In a series of articles, Bell and Freeman $(1996,2000,2001)$ outlined the hypothesis that workers were 'forward looking' as they respond to the distribution of wages by working harder to obtain future raises and promotions, and suggested that workers in a country with more wage inequality had a higher incentive to work longer hours. According to this reasoning, workers in a region with more wage inequality may be encouraged to work longer hours in order to reach the upper echelons of society. Conversely, the incentive to work harder might be lower in regions with less wage inequality. According to this view, more wage inequality should result in longer hours among all groups, but especially among those that are at the top of the work hours distribution where the returns to extra work are presumed to be highest. Figure 4 shows the relationship between provincial wage inequality (as measured by the Gini coefficient) and average work hours in the top quintile of the work hours distribution. Clearly, there are large and important differences in wage inequality across provinces. However, from this simple analysis, it does not appear to strongly influence work hours.
(2) Taxes

It is often suggested that taxes act as a powerful disincentive to work longer hours, especially for those that are at the top of the work hours distribution. While labour economic theory suggests that decisions related to the supply of labour should be related to marginal tax rates (Blundell and Macurdy, 1999), it is very difficult to gauge the effect of taxes on hours in a robust fashion because hours are endogenously related to the labour supply choices of individuals (Devereux, 2004). Government taxation 'efforts' can be proxied by calculating the extent to which taxes contribute to reducing income inequality within provinces. This is done through comparing the Gini coefficient for after-tax income with the one for before-tax income. This difference reflects the extent of tax redistribution and is representative of the average tax rate and the progressivity
of the taxation system in a province. ${ }^{4}$ Hence, we plot the reduction in income inequality against differences in average provincial work hours, with results shown in Figure 5. Indeed, the total redistribution implicit in the personal income tax system does appear to be associated with working hours, with Quebec and Newfoundland and Labrador showing higher tax redistribution but lower average hours.

(3) The influence of macroeconomic factors

Previous research has shown that the evolution in the Canada-U.S. hours gap tended to coincide with business cycle developments reflected in the Canada-U.S. unemployment gap (Heisz and LaRochelle-Côté, 2003). Similarly, if a given region has more individuals living in 'economically depressed' areas, it may have a larger share of individuals dealing with weaker labour demand conditions. According to this line of reasoning, it should be relatively more difficult to achieve a desirable level of work hours in areas with low labour demand. In Figure 6, we show the relationship between provincial differences in hours per worker and unemployment rates, which can be used as a proxy for local labour demand conditions. Clearly, more spells of unemployment during the year would negatively affect annual work hours. Presumably if regional unemployment rates were more similar, differences in working hours would be reduced. However, regional differences in unemployment are, in part, related to structural differences, and not solely to the business cycle.

(4) Local preferences and shape of institutions

The influence of preference and differences in lifestyle are sometimes mentioned in possible sources of working hours differences in international studies. In his examination of U.S.-German differences in work hours, Osberg (2001) notes that the main difference in annual hours worked per person between the two countries mostly arises from the lower propensity of women and older men to be employed, and concludes that work hours differences are better described by national differences in lifestyle and preferences. While differences in preferences are typically difficult to observe in survey data, it is at least possible to derive some inferences about preferences in work hours by using data from the most recent version available of the Workplace and Employee Survey (WES). The WES asks questions to a representative sample of workers on whether they would prefer to work more hours for more pay, fewer hours for less pay, or the same number of hours for the same pay. ${ }^{5}$ Results for the 2003 WES are shown in Table 3.

Interestingly, not all regions share similar preferences in working time. Despite working lower hours than in the rest of the country, workers in the Atlantic, Quebec and in British Columbia reported higher levels of satisfaction with their current levels of working hours. Among those that were not satisfied with their current working schedule, workers in Quebec and in British Columbia were least likely to indicate that they wanted to increase their time at work-two provinces where the number of working hours is lower than the Canadian average. Furthermore, women workers dissatisfied with their jobs were proportionately more likely to wish for a reduction in work hours in Quebec and in British Columbia. Finally, it should be noted that the highest proportions of workers who would like to work more can be found in Ontario and in

[^1]5. The Workplace and Employee Survey excludes most workers from the agricultural sector and all workers from the public sector.

Manitoba-Saskatchewan-two regions where individuals are already working relatively long hours.

Another possibility often raised in explaining differences in work hours is the shape of institutions, including differences in labour market regulations. For instance, the regular workweek for the public service is 35 hours per week in Quebec, compared to at least 37.5 hours per week in most other provinces. It appears that this shorter workweek is also observed in other sectors of the economy in Quebec. Furthermore, institutional differences might well be the result of differences in collective preferences expressed through political channels. This makes it difficult to separate the issue of institutions from the issue of preferences.

Observables

'Observables' refer to a set of factors influencing work hours that are readily available from household surveys. These include differences in union status, industrial structure, job conditions and demographic characteristics. It is often argued that differences in work hours could be due to compositional differences across these factors. This sub-section provides a brief overview of these arguments.
(1) Union status

Differences in union status are often mentioned as one possible source of differences in work hours - especially in Quebec. In a study focusing on the particular case of the province of Quebec, Fortin (2003) noted that decisions related to working time may be the result of "collective action through...labour unions, and therefore sometimes seem imposed on individuals instead of reflecting their voluntary decisions" (p. 41) and that unions were more likely to secure shorter workweeks and longer vacation time for their members. Hence, it may be that workers are working fewer hours in regions where the involvement of unions seems to be more extensive (particularly in Quebec).
(2) Industrial structure

Observable factors that may explain regional discrepancies in work hours also include differences in the industrial structure. In seasonal industries, for instance, some work can be done only over a few weeks. Workers in seasonal and primary industries also face a stronger probability of being laid off (Heisz and Côté, 1999; Statistics Canada, 1998) and to work unstable hours (Heisz and LaRochelle-Côté, 2006). Hence, workers in regions with a larger proportion of seasonal and primary industries may be more likely to work fewer hours than those in other regions. Workers in education services also typically work fewer hours on an annual basis, due to a reduction of activities during the summer.
(3) Job conditions

Differences in job conditions may also be instrumental in explaining work hours differences across regions. These factors include the size of the firm and the management responsibilities of individuals. It is important to account for the size of the firm because workers in small firms are typically more likely to be laid off (Statistics Canada, 1998) and more likely to deal with unstable job conditions (Drolet and Morissette, 1998). Furthermore, it is also important to account for management responsibilities because managers are much more likely to work longer
hours (Heisz and LaRochelle-Côté, 2006). As a result, workers in a region with fewer workers in management functions may be less likely to put in long hours.

(4) Demographic characteristics

Demographic differences across regions may also play a role in explaining differences in work hours. Labour supply decisions are often related to a wide variety of demographic factors. Young mothers, for instance, are more likely to work part time because they are caring for children (Statistics Canada, 2005). Other studies have shown that individuals working shorter hours were more likely to be women with children, single men without children, young, less educated, and to have shorter job tenures (Heisz and LaRochelle-Côté, 2006). Some of these characteristics do not vary considerably across regions, but others-such as the education level and the years of experience on the labour market - may vary across regions.

3. Data and method

In this study, we use annual work hours information from the 2004 Survey of Labour and Income Dynamics (SLID) ${ }^{6}$ for prime-aged individuals (aged 25 to 54). We select this age group because prime-aged individuals are typically more engaged into the labour market, and may be more likely to share similar preferences in working time.

In SLID, respondents are asked each year to describe their work schedules, which are then aggregated into a figure for annual working hours. Hours worked are collected by asking paid workers for how many hours they "usually" get paid in a typical workweek and by asking selfemployed workers how many hours they "usually" work each week. A typical workweek refers to the number of hours one should normally work during one week. It includes time off for holidays, paid sick leave or maternity leave and usual paid overtime, but excludes paid overtime and all unpaid hours. These questions are asked for each job held by the individual in the year (up to a maximum of six) and not for all jobs together. Unpaid absences are subtracted from the usual work hours schedule. The information about weekly hours worked in every job held during the year is put together with other information collected by the survey about weeks worked to compute individual estimates of annual hours worked. ${ }^{7}$ Our sample from SLID includes approximately 19,500 prime-aged individuals who worked on at least one occasion in $2004 .^{8}$

Self-employed workers were excluded from our sample. Unlike paid workers, self-employed workers have the ability to choose their work hours more freely. Self-employment also includes a wide range of experiences and working conditions, making it difficult to draw clear inferences
6. This corresponds to the most recent year available in SLID.
7. For more details about the collection of annual work hours in SLID, see Bartman and Garneau (1998).
8. Many observations from SLID had missing values for work hours and for some other important variables. A missing value indicates that the respondent was not interviewed or did not provide an answer. This is mostly because SLID gives positive weights to all the members of a household if data were collected for at least one of them for either the labour portion or income portion of the survey. The descriptive statistics in Section 2 exclude missing observations for work hours. The results of Sections 4 and 5 exclude missing observations for work hours and for union status, industrial structure, job conditions or demographic characteristics. In all cases, we adjusted the weights of the remaining sample upwards proportionately to compensate.
about the impact of working time on the well-being of such a wide variety of individuals. Hence, this study focuses on paid workers only.

We use the Oaxaca (1973) decomposition to examine the possible impact of compositional differences in union status, industrial structure, job conditions and demographic characteristics on regional differences in work hours. These decompositions work on simple counterfactuals such as: "What would be the average level of work hours in a given region (Quebec, for instance) if it had the same observable characteristics as another region of reference?" Hence, we run five separate Oaxaca decompositions to identify the part (if any) of regional differences in work hours between Ontario (the most populous region) and the five other regions that can be explained by differences in observables.

While we use the Oaxaca decomposition to decompose differences in average work hours, it is also possible to decompose differences in the distribution of work hours by using the conditional density estimation method of DiNardo, Fortin and Lemieux (1996). This semi-parametric procedure relies on the imposition of counterfactuals on the observed distribution of the variable of interest (e.g. work hours). While the Oaxaca decomposition focuses on means alone, this method allows us to work with the entire density of hours to build 'counterfactual' densities that would have prevailed in a given region if the characteristics were the same as another region of reference (Ontario). These counterfactual densities can be estimated by 'reweighting' all observations on a sequential basis to evaluate the contribution of observable factors in explaining regional differences in work hours. Readers interested in the details will find a complete description of this procedure in Appendix A. Results from the Oaxaca decomposition and the DFL procedure are shown in the next two sections.

4. Explaining differences in average annual work hours

Differences in average work hours by union status, industrial structure, job conditions and demographic characteristics are shown in Tables 4 to 7 , along with the corresponding distribution of workers for each region. Table 4 indicates that unionization rates varied quite largely across regions, from nearly 40% in Quebec and in Manitoba-Saskatchewan to 26% in Alberta and 30% in other regions. However, differences in work hours between unionized and non-unionized workers were generally small. This is important because it suggests that differences in union status, however large, might not be very helpful in explaining regional differences in average work hours.

Differences across industries are shown in Table 5. Not surprisingly, Quebec and Ontario had proportionately more workers engaged in manufacturing, and workers in Alberta were much more likely to work in the oil and gas sector. Furthermore, workers in the Atlantic and in British Columbia were more likely to work in consumer services. In terms of hours, workers in oil and gas industries were generally busier than other workers, with 2,170 hours per year on average. Conversely, workers in consumer services and in education services worked relatively fewer hours on average (1,650 and 1,670 hours respectively). These results are consistent with the greater use of part-time work and the large permanent layoff rates observed in consumer services (Statistics Canada, 1998) and the more moderate levels of activity in schools during the summer. This also suggests that differences in regional work hours might be related in part to industrial structure differences.

Table 6 reports differences in average work hours across job conditions. Workers in the Atlantic were more likely to work in smaller firms, and Ontario workers were proportionately more likely to work in large firms. Workers in Quebec and in the Atlantic were less likely to be working as managers. Because top managers typically work much more, and because workers in small firms (with fewer than 20 employees) typically work fewer hours, some of the differences in work hours across regions could also be the result of regional differences in job conditions.

Finally, differences in work hours across demographic characteristics (age, family situation, work experience, and education level) are shown in Table 7. As expected, younger individuals, single and married women with children, workers with fewer years of experience, and workers in occupations requiring no more than high-school education worked fewer hours than others. While work hours varied extensively across demographic characteristics, the distribution of workers across these characteristics did not vary considerably across regions. As a result, the part of differences in work hours that can be attributed to demographic differences is likely to be small.

The results of the Oaxaca decomposition are shown in Table 8. The first column indicates by how much the average hours in the region differ from those of Canada's largest region (Ontario). The second column shows the differences that would prevail if unionization rates were similar (holding everything else constant). The third column indicates the extent of these differences when industrial differences are accounted for. The fourth column accounts for job conditions, and the fifth considers all observable factors, including demographic characteristics. The results indicate that differences in observable factors generally explained little of differences in average work hours between Ontario and the other regions (with the possible exception of job conditions in the Atlantic and in British Columbia). This was not entirely unexpected, as Tables 4 to 7 also indicated that many of the overall differences in regional work hours also remained within groups, which limits the amount of regional differences that could be explained by compositional differences.

However, the main limitation of the Oaxaca decomposition is that it solely focuses on the mean, thus hiding possible differences in other parts of the work hours distribution, and ignoring the potential of other observable factors in explaining these distributional differences. For example, unions are often cited as a possible factor in preventing workers from working overtime hours. Hence, it might be that differences in unionization rates are much more effective in explaining differences at the top of the work hours distribution. In the next section, we turn our attention to the distribution of work hours, and we attempt to explain differences between the Ontario distribution and the other regional distributions through the estimation of counterfactual densities based on our four observable factors.

5. Explaining differences in the distribution of annual work hours

Results from the decomposition method used for the distribution of annual work hours are shown in Tables 9 to 13 , with Table 9 showing the actual distributions. Table 10 shows the counterfactual distributions of work hours when differences in the union status are accounted for. The first panel shows the distribution in work hours that would prevail if all regions had identical union participation rates. The second panel shows the percentage difference from the Ontario distribution when differences in union status are accounted for (conditional on industrial
structure, job conditions, and demographic characteristics). The third panel shows the incremental effect of union status to the distributional differences in work hours.

Table 10 indicates that regional differences in the distribution of work hours would not be much different from what we observed in Table 9 if all regions had the same level of union coverage. This suggests that union coverage contributes little to explain regional differences in the distribution of annual work hours.

Table 11 shows differences in work hours when compositional differences in the industrial structure are accounted for (in addition to the union status). If all Canadian workers were distributed similarly to those across Ontario industries, the share of workers with an ordinary full-year, full-time schedule would rise in all regions, more particularly in the Atlantic ($+2.3 \%$), in Manitoba-Saskatchewan $(+2.2 \%)$ and in Alberta ($+3.5 \%$). In the Atlantic and in Alberta, the increase in the share of individuals working standard hours would be accompanied by reductions in the shares of workers with both a short and long work-year. In other regions, these changes would mostly be the result of reductions in the shares of workers with fewer than 1,500 hours. While substantial differences would remain between the distributions of Ontario and Quebec, and the Atlantic and British Columbia, even after controlling for industry characteristics, it should be noted that the distributions of Alberta, Manitoba-Saskatchewan and Ontario would be much more alike if they had similar industry characteristics.

Remaining differences in work hours when union status, industrial structure and job conditions (firm size and management characteristics) are accounted for are shown in Table 12. Clearly, differences in job conditions are associated with the larger share of individuals working a short year in the Atlantic, Quebec and British Columbia. In these regions, fewer workers would be working a short year, and more would be working on an ordinary full-year, full-time basis if they had the same job conditions as in Ontario.

Finally, results accounting for all factors-including demographic characteristics-are shown in Table 13. These characteristics include gender, age, experience, education level and family status. Demographic differences explain little of the remaining differences in the distribution of work hours. This is consistent with Table 7, which indicated that demographic characteristics did not vary considerably across regions. ${ }^{9}$

How much of the initial distributional differences observed between regions were explained by observable factors? One way to answer this question is to examine the differences between Ontario and the other regions that would prevail in various parts of the distribution when all observable characteristics are controlled for. Results are shown in Figures 7 to 10.

Figure 7 reports the differences in the shares of individuals working short years (combining very short year and short year categories), or fewer than 1,500 hours a year. It shows that differences in observables are relatively efficient in explaining regional differences in the bottom of the distribution. Depending on the region, one third to all of the differences in the shares of workers

[^2]with fewer than 1,500 hours can be attributed to observables. Observables explain almost entirely why Quebec and Manitoba-Saskatchewan workers work more short years. Of the explained part, differences in the industrial structure and in job conditions typically explained most of the differences.

Figure 8 reports the differences in the shares of individuals working a long year (combining long year and very long year categories), or 2,300 hours or more per year. Clearly, observables are not very helpful in explaining differences at the top of the work hours distribution-except in Alberta, where differences in observables explained nearly half of differences in the share of individuals working more than 2,300 hours, mainly because of compositional differences in the industrial structure.

Differences in the shares of workers with an ordinary full-year, full-time schedule-between 1,900 and 2,300 hours per year-are shown in Figure 9. With the reduction of workers with a short year (shown in Figure 7), all regions would gain proportionately more full-year, full-time workers. Depending on the region, one third to two thirds of the initial differences between Ontario and the other regions could be related to differences in observables. Again, differences in the industrial structure and in job conditions accounted for most of the explained part.

Finally, differences in the shares of workers with a low full-year, full-time schedule-between 1,500 and 1,900 hours per year-are shown in Figure 10. In this case, the only significant difference-between Quebec and Ontario-does not appear to be related to differences in observables. Other differences were already very small.

Clearly, the effect of observables in explaining differences in annual work hours varied quite widely across the work hours distribution. While observables were relatively good in explaining differences at the bottom and in the middle of the distribution (between some regions), they were less efficient in explaining differences at the top of the work hours distribution, and were largely ineffective in explaining why Quebec had a larger share of workers with a low full-year, fulltime working schedule. This suggests that a good deal of differences in annual work hours should be attributed to unobservables-most notably in the Atlantic, Quebec and British Columbia.

6. Conclusion

This study describes the difference in annual work hours among regions of Canada for 2004 using the Survey of Labour and Income Dynamics. The objective is to describe these differences and to determine how much of them could be explained by a basic set of observable factors, i.e. demographic characteristics, union status, industrial structure, and job conditions. We argue that if most of the inter-regional difference in work time can be explained by observables, then debate over the cause of regional difference can focus on these.

We find that these observables do not explain much of the regional difference in average work hours, but they are much better at explaining the differences in the shares of individuals working fewer than 1,500 hours (a short-year schedule). For example, observables explain almost entirely why workers in Quebec and in Manitoba-Saskatchewan were more likely to work short hours than their Ontario counterparts.

In addition, one third to two thirds of the differences in the share of individuals working between 1,900 and 2,300 hours a year (the ordinary full-year, full-time schedule) could be attributed to observables. Of the observables, differences in union status and demographic characteristics explained very little of the differences in work hours. Differences in industrial structure and in job conditions (including firm size and management responsibilities) explained more of the differences in work hours.

However, observables did not explain differences in the share of workers with a long work year (more than 2,300 hours), did not entirely explain the larger share of workers in the Atlantic and in British Columbia with a short-year schedule, and did not explain the large prevalence of the low full-year, full-time schedule (between 1,500 and 1,900 hours) in Quebec.

The differences that remain unexplained suggest that other factors also contribute to regional differences in work hours. These factors are unobservable in the sense that they are impossible or difficult to quantify with households surveys. These would include differences in incentives related to wage inequality and differences in taxes, in macroeconomic factors, in local preferences and tastes, and in the shape of institutions.

While the relative contribution of unobservable factors in explaining differences in work hours is unclear, it is likely that different factors are at work in different regions. For instance, results from the 2003 Workplace and Employee Survey indicated that differences in local tastes and preferences may explain why workers in Quebec and in British Columbia are working fewer hours. In Quebec, the prevalence of the 35-hour workweek suggests that the shape of institutions might also be playing a role. In the Atlantic, the fact that so many prime-aged men are working fewer than 1,100 hours per week suggests that local economic conditions could be an important factor in explaining differences in work hours. Furthermore, second-order effects may also be at work. For example, high unionization rates in Quebec might affect work hours in both the unionized and non-unionized sectors. More research will be needed to understand the impact of these factors in explaining regional differences in work hours.

Figure 1 Average annual work hours by region among working men and women aged 25 to 54, 2004
Average annual work hours

Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Figure 2 Average annual work hours by region among working men aged 25 to 54, 2004
Average annual work hours

[^3]Figure 3 Average annual work hours by region among working women aged 25 to 54, 2004

Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics

Figure 4 Gini coefficient and average work hours in the top quintile among workers aged 25 to 54, 2004

[^4]Figure 5 Reduction in income inequality due to taxes and relative hours among workers aged 25 to 54, 2004

Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.
Figure 6 Unemployment rates and relative hours among workers aged 25 to 54, 2004

Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Figure 7 Percentage difference in the share of workers aged 25 to 54 working fewer than $\mathbf{1 , 5 0 0}$ hours per year (short year), 2004

\square Before accounting for observables After accouting for observables

[^5]Figure 8 Percentage difference in the share of workers aged 25 to 54 working 2,300 hours or more per year (long year), 2004
Percentage difference

[^6]Figure 9 Percentage difference in the share of workers aged 25 to 54 working between 1,900 and 2,300 hours per year (ordinary full-year, full-time), 2004

Note: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics

Figure 10 Percentage difference in the share of workers aged 25 to 54 working between 1,500 and 1,900 hours per year (low full-year, full-time), 2004

Note: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 1 Work hours categories and schedules

Categories, annual work hours Fewer than 1,100	Categories, weekly work hours	Schedules
1,100 to 1,500	Less than 21	Very short year
1,500 to 1,900	21 to 29	Short year
1,900 to 2,300	29 to 37	Low full year, full time
2,300 to 2,700	37 to 44	Ordinary full year, full time
2,700 and over	44 to 52	Long year

Table 2 Percentage distribution of workers aged 25 to 54 across categories of annual work hours, by region, 2004
$\left.\begin{array}{lcccccc}\hline \begin{array}{l}\text { Categories of annual } \\ \text { work hours }\end{array} & \text { Atlantic } & \text { Quebec } & \text { Ontario } & \begin{array}{c}\text { Manitoba- } \\ \text { Saskatchewan }\end{array} & \text { Alberta } \\ \text { Columbia }\end{array}\right]$

Table 3 Proportion of workers ${ }^{1}$ aged 25 to 54 who would like to work...

	... the same number of hours for the same pay	... fewer hours for less pay	... more hours for more pay
	Percentage distribution		
All			
Atlantic	73.3	5.3	21.4
Quebec	73.6	7.3	19.2
Ontario	66.9	7.2	25.9
Manitoba-Saskatchewan	67.0	4.9	28.1
Alberta	72.6	6.0	21.4
British Columbia	73.8	7.0	19.2
Canada	70.4	6.8	22.8
Men			
Atlantic	72.4	3.8	23.7
Quebec	73.3	6.3	20.3
Ontario	67.0	7.7	25.3
Manitoba-Saskatchewan	61.9	6.4	31.7
Alberta	71.5	5.2	23.3
British Columbia	70.4	6.0	23.6
Canada	69.4	6.5	24.0
Women			
Atlantic	73.8	6.4	19.8
Quebec	73.8	8.2	18.0
Ontario	66.8	6.7	26.5
Manitoba-Saskatchewan	71.8	3.4	24.7
Alberta	73.5	6.8	19.7
British Columbia	76.4	7.7	15.9
Canada	71.3	7.0	21.7

1. Excluding workers in the public service and in most agricultural industries.

Source: Statistics Canada, 2003 Workplace and Employee Survey.

Table 4 Percentage distribution and average work hours of workers aged 25 to 54, by union status, 2004

Union status	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia	All
	Percentage distribution						
Unionized	31.0	38.2	29.1	38.1	26.0	30.8	31.9
Non-unionized	69.0	61.8	70.9	61.9	74.0	69.2	68.1
	Average work hours						
Unionized	1,870	1,790	1,890	1,880	1,860	1,840	1,850
Non-unionized	1,760	1,750	1,840	1,860	1,900	1,790	1,810

Notes: Average work hours are rounded to the nearest 10 . Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 5 Percentage distribution and average work hours of workers aged 25 to 54 , by industrial structure, 2004

Industrial structure	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia	All
	Percentage distribution						
Agriculture	4.4	1.8	1.0	2.2	1.0	3.0	1.8
Oil and gas	1.3	0.6	0.5	2.2	7.4	1.0	1.5
Construction and utilities	7.4	5.9	6.1	5.9	7.9	5.8	6.3
Manufacturing	12.8	18.9	18.5	11.1	8.8	13.0	16.0
Consumer services	21.1	17.3	16.4	18.0	16.9	22.3	17.9
Business services	8.8	12.7	13.4	9.0	13.4	11.4	12.4
Education services	8.2	9.0	7.6	9.4	9.6	7.5	8.3
Health care services	14.2	13.1	11.1	15.3	12.0	10.8	12.1
Wholesale and transportation	8.5	7.2	9.0	9.7	9.5	11.7	8.9
Arts, entertainment and recreation	2.8	3.6	5.3	5.1	3.9	5.2	4.5
All other services	3.1	2.9	3.3	4.5	4.3	3.0	3.3
Public administration	7.2	7.1	7.9	7.5	5.2	5.5	7.0
	Average work hours						
Agriculture	2,010	1,840	1,780	2,150	2,230	1,830	1,900
Oil and gas	2,010	2,060	2,160	2,200	2,240	1,910	2,170
Construction and utilities	1,830	1,810	1,910	2,090	2,010	1,870	1,900
Manufacturing	1,880	1,940	1,990	1,970	2,050	1,900	1,970
Consumer services	1,650	1,630	1,610	1,760	1,760	1,690	1,650
Business services	1,810	1,770	1,880	1,830	1,870	1,820	1,840
Education services	1,720	1,540	1,750	1,710	1,670	1,690	1,670
Health care services	1,700	1,660	1,750	1,740	1,730	1,790	1,720
Wholesale and transportation	1,960	1,950	2,000	1,950	2,050	1,900	1,970
Arts, entertainment and recreation	1,770	1,830	1,920	1,850	1,970	1,690	1,870
All other services	1,700	1,710	1,900	1,850	1,750	1,890	1,820
Public administration	1,920	1,830	1,930	2,020	1,860	1,990	1,910

1. Based on the main job

Notes: Average work hours are rounded to the nearest 10 . Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 6 Percentage distribution and average work hours of workers aged 25 to 54 , by job conditions, ${ }^{1}$ 2004

Job conditions	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia	All
	Percentage distribution						
Management level - Perser							
Top manager	5.1	7.1	7.1	6.8	7.5	7.0	7.0
Middle manager	8.9	5.9	10.6	9.7	11.4	9.8	9.2
Low manager	5.9	4.7	6.6	6.2	7.3	7.1	6.2
Not a manager	80.1	82.3	75.7	77.3	73.9	76.1	77.6
Firm size							
Less than 20 employees	24.4	19.9	17.6	22.8	19.6	25.3	20.1
20 to 99 employees	16.2	20.6	17.9	18.6	15.7	19.4	18.4
100 to 499 employees	13.3	16.1	15.1	16.8	17.5	16.5	15.7
500 to 999 employees	7.3	7.8	6.9	7.1	6.2	7.4	7.1
1,000 employees and over	38.8	35.6	42.6	34.5	41.1	31.5	38.6
	Average work hours						
Management level							
Top manager	2,080	2,070	2,110	2,130	2,160	2,160	2,110
Middle manager	2,040	1,910	2,000	2,090	2,010	1,950	1,990
Low manager	1,890	1,860	1,930	1,940	1,980	1,880	1,910
Not a manager	1,740	1,720	1,800	1,810	1,830	1,750	1,770
Firm size							
Less than 20 employees	1,690	1,610	1,740	1,780	1,750	1,710	1,700
20 to 99 employees	1,850	1,800	1,850	1,850	1,900	1,740	1,830
100 to 499 employees	1,760	1,800	1,900	1,880	2,000	1,880	1,870
500 to 999 employees	1,850	1,700	1,900	1,920	1,930	1,740	1,830
1,000 employees and over	1,830	1,840	1,880	1,920	1,890	1,900	1,830

1. Based on the main job.

Notes: Average work hours are rounded to the nearest 10 . Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 7 Percentage distribution and average work hours of workers aged 25 to 54, by demographic characteristics, 2004

Demographic characteristics	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia	All
	Percentage distribution						
Age							
25 to 34	31.1	33.0	33.6	33.1	35.7	33.4	33.4
35 to 44	35.5	34.0	36.7	33.1	33.7	34.7	35.2
45 to 54	33.3	33.0	29.6	33.7	30.6	31.9	31.4
Family situation							
Single women with children	5.8	6.5	5.0	6.1	5.0	5.4	5.6
Single women without children	8.9	11.6	11.1	8.6	8.9	11.5	10.7
Single men with children	1.5	2.8	1.3	1.7	1.8	2.0	1.8
Single men without children	11.6	15.6	15.6	13.7	16.8	15.0	15.2
Married women with children	24.7	21.9	24.2	26.5	23.0	20.9	23.3
Married women without children	10.8	8.2	7.9	8.6	10.2	9.8	8.7
Married men with children	26.2	25.4	26.8	26.7	24.1	25.9	26.0
Married men without children	10.4	7.9	8.0	8.0	10.1	9.5	8.7
Work experience ${ }^{1}$							
Less than 5 years	14.6	18.2	16.1	17.5	18.3	17.5	17.0
5 to 9 years	16.6	14.8	17.5	15.6	17.4	15.8	16.4
10 to 14 years	15.0	16.2	17.5	15.7	16.6	14.2	16.4
15 to 19 years	20.5	17.8	19.2	17.5	17.2	20.5	18.8
At least 20 years	33.3	33.0	29.6	33.7	30.6	31.9	31.4
Education level ${ }^{2}$							
Management education	6.5	8.3	8.8	8.8	9.3	8.8	8.5
University education	16.4	20.0	19.4	15.8	21.1	14.5	18.7
College education	30.0	30.8	28.5	32.1	30.3	29.7	29.7
High-school education	47.2	41.0	43.3	43.3	39.3	46.9	43.0

Table 7 Percentage distribution and average work hours of workers aged 25 to 54, by demographic characteristics, 2004 (concluded)

Demographic characteristics	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia	All
	Average work hours						
Age							
25 to 34	1,700	1,690	1,780	1,770	1,860	1,750	1,760
35 to 44	1,830	1,810	1,890	1,900	1,870	1,860	1,860
45 to 54	1,840	1,800	1,890	1,930	1,940	1,800	1,860
Family situation							
Single women with children	1,580	1,610	1,690	1,690	1,830	1,520	1,650
Single women without children	1,710	1,720	1,800	1,700	1,850	1,710	1,760
Single men with children	1,980	1,960	2,120	1,920	2,200	1,960	2,030
Single men without children	1,790	1,800	1,880	2,010	2,060	1,920	1,890
Married women with children	1,570	1,510	1,610	1,570	1,570	1,540	1,570
Married women without children	1,700	1,660	1,830	1,830	1,690	1,730	1,750
Married men with children	2,040	1,990	2,050	2,100	2,100	2,020	2,040
Married men without children	1,960	1,930	2,020	2,170	2,020	1,960	1,990
Work experience ${ }^{\text {' }}$							
Less than 5 years	1,660	1,650	1,760	1,740	1,910	1,700	1,730
5 to 9 years	1,740	1,730	1,800	1,800	1,800	1,810	1,780
10 to 14 years	1,820	1,820	1,890	1,860	1,850	1,820	1,850
15 to 19 years	1,830	1,800	1,880	1,940	1,880	1,900	1,860
At least 20 years	1,840	1,800	1,890	1,930	1,940	1,800	1,860
Education level ${ }^{2}$							
Management education	2,000	1,930	2,010	2,080	2,080	1,980	2,000
University education	1,850	1,760	1,870	1,790	1,890	1,810	1,833
College education	1,860	1,770	1,920	1,920	2,000	1,860	1,880
High-school education	1,700	1,730	1,770	1,810	1,760	1,740	1,750

1. We proxy work experience by computing age minus 25 for all individuals in the sample. The Survey of Labour and Income Dynamics has a variable indicating years of work experience, but too many observations are missing.
2. Based on skills required by the occupation (National Occupational Classification for Statistics 2001). The Survey of Labour and Income Dynamics has a variable for the education level, but too many observations are missing.
Notes: Average work hours are rounded to the nearest 10. Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 8 Results from the Oaxaca decomposition, average work hours, 2004

	Total difference (from Ontario)	(a) Union status	$\begin{gathered} \text { (b) } \\ + \text { industrial structure } \end{gathered}$	(c) (b) + job conditions	(d) (c) + demographic characteristics
Atlantic	-60.0	-62.4	-61.8	-43.0	-38.0
Quebec	-86.5	-94.5	-88.8	-71.9	-75.4
Manitoba-Saskatchewan	13.7	10.6	11.6	22.0	31.6
Alberta	35.4	36.3	35.4	34.6	26.4
British Columbia	-46.1	-45.8	-39.2	-18.7	-26.1

Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. As a result, differences in average hours in this table might be slightly different from those presented in Figure 1. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 9 Percentage distribution of workers aged 25 to 54 across categories of annual work hours, 2004

Annual work hours	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia
	Percentage distribution $\left(f_{1}\right)$					
Fewer than 1,100	17.1	13.2	12.6	13.9	12.8	15.6
1,100 to 1,500	8.4	8.2	5.7	7.1	7.5	8.5
1,500 to 1,900	16.4	27.9	15.7	15.4	15.0	17.3
1,900 to 2,300	46.6	44.9	57.8	51.8	51.8	48.6
2,300 to 2,700	6.6	3.6	4.9	6.4	6.5	4.9
2,700 and over	4.9	2.3	3.2	5.4	6.4	5.2
	Percentage difference from Ontario					
Fewer than 1,100	4.5	0.6	\ldots	1.3	0.2	3.0
1,100 to 1,500	2.7	2.5	\ldots	1.4	1.8	2.8
1,500 to 1,900	0.7	12.2	\cdots	-0.3	-0.7	1.6
1,900 to 2,300	-11.2	-12.9	\cdots	-6.0	-6.0	-9.2
2,300 to 2,700	1.7	-1.3	\ldots	1.5	1.6	0.0
$\frac{2,700 \text { and over }}{\ldots \text { not applicable }}$	1.7	-0.9	\ldots	2.2	3.2	2.0

Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. As a result, the distributions of the first panel are slightly different from the results shown in Table 2. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 10 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for union status, 2004

Categories of annual work hours	Atlantic	Quebec	Ontano	ManitobaSaskatchewan	Alberta	British Columbia
	Percentage distribution $\left(f_{2}\right)$					
Fewer than 1,100	17.1	14.1	12.6	14.2	13.2	15.7
1,100 to 1,500	8.2	8.0	5.7	7.0	7.7	8.5
1,500 to 1,900	16.1	27.5	15.7	15.3	14.8	17.3
1,900 to 2,300	46.9	44.8	57.8	51.4	51.7	47.8
2,300 to 2,700	6.8	3.4	4.9	6.4	5.9	4.9
2,700 and over	4.9	2.3	3.2	5.7	6.7	5.8
	Percentage difference from Ontario, accounting for union status					
Fewer than 1,100	4.5	1.5	\ldots	1.6	0.6	3.1
1,100 to 1,500	2.5	2.3	...	1.3	2.0	2.8
1,500 to 1,900	0.4	11.8	...	-0.4	-0.9	1.6
1,900 to 2,300	-10.9	-13.0	...	-6.4	-6.1	-10.0
2,300 to 2,700	1.9	-1.5	...	1.5	1.0	0.0
2,700 and over	1.7	-0.9	...	2.5	3.5	2.6
	Percentage contribution of union status ($\left.f_{2}-f_{l}\right)$					
Fewer than 1,100	0.0	0.9	...	0.3	0.4	0.1
1,100 to 1,500	-0.2	-0.2	...	-0.1	0.2	0.0
1,500 to 1,900	-0.3	-0.4	...	-0.1	-0.2	0.0
1,900 to 2,300	0.3	-0.1	...	-0.4	-0.1	-0.8
2,300 to 2,700	0.2	-0.2	...	0.0	-0.6	0.0
2,700 and over	0.0	0.0	...	0.3	0.3	0.6

.. not applicable
Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 11 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for union status and industrial structure, 2004

Categories of annual work hours	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia
	Percentage distribution $\left(f_{3}\right)$					
Fewer than 1,100	16.9	13.4	12.6	14.0	12.6	15.1
1,100 to 1,500	7.7	7.4	5.7	6.1	7.0	8.7
1,500 to 1,900	15.2	27.4	15.7	14.1	14.0	17.0
1,900 to 2,300	49.2	45.8	57.8	53.6	55.2	48.7
2,300 to 2,700	6.6	3.7	4.9	6.6	5.2	4.7
2,700 and over	4.3	2.2	3.2	5.6	6.0	5.8
	Percentage difference from Ontario, accounting for union status and industrial structure					
Fewer than 1,100	4.3	0.8	...	1.4	0.0	2.5
1,100 to 1,500	2.0	1.7	...	0.4	1.3	3.0
1,500 to 1,900	-0.5	11.7	...	-1.6	-1.7	1.3
1,900 to 2,300	-8.6	-12.0	...	-4.2	-2.6	-9.1
2,300 to 2,700	1.7	-1.2	...	1.7	0.3	-0.2
2,700 and over	1.1	-1.0	...	2.4	2.8	2.6
	Percentage contribution of industrial structure ($\left.f_{3}-f_{2}\right)$					
Fewer than 1,100	-0.2	-0.7	...	-0.2	-0.6	-0.6
1,100 to 1,500	-0.5	-0.6	...	-0.9	-0.7	0.2
1,500 to 1,900	-0.9	-0.1	...	-1.2	-0.8	-0.3
1,900 to 2,300	2.3	1.0	...	2.2	3.5	0.9
2,300 to 2,700	-0.2	0.3	...	0.2	-0.7	-0.2
2,700 and over	-0.6	-0.1	...	-0.1	-0.7	0.0

Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 12 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for union status, industrial structure and job conditions, 2004

Categories of annual work hours	Atlantic	Quebec	Ontario	Manitoba- Saskatchewan	Alberta	British Columbia
	Percentage distribution $\left(f_{4}\right)$					
Fewer than 1,100	16.1	12.4	12.6	13.2	12.7	14.2
1,100 to 1,500	7.4	6.8	5.7	5.7	7.0	8.1
1,500 to 1,900	15.0	27.2	15.7	14.3	14.1	16.7
1,900 to 2,300	50.6	47.7	57.8	54.5	55.3	50.5
2,300 to 2,700	6.5	3.7	4.9	6.7	5.2	4.6
2,700 and over	4.3	2.1	3.2	5.6	5.8	5.9
	Percentage difference from Ontario, accounting for union status, industrial structure and job conditions					
Fewer than 1,100	3.5	-0.2	...	0.6	0.1	1.6
1,100 to 1,500	1.7	1.1	...	0.0	1.3	2.4
1,500 to 1,900	-0.7	11.5	...	-1.4	-1.6	1.0
1,900 to 2,300	-7.2	-10.1	\ldots	-3.3	-2.5	-7.3
2,300 to 2,700	1.6	-1.2	\cdots	1.8	0.3	-0.3
2,700 and over	1.1	-1.1	\ldots	2.4	2.6	2.7
	Percentage contribution of job conditions $\left(f_{4}-f_{3}\right)$					
Fewer than 1,100	-0.8	-1.0	. ${ }$	-0.8	0.1	-0.9
1,100 to 1,500	-0.3	-0.6	\cdots	-0.4	0.0	-0.6
1,500 to 1,900	-0.2	-0.2	...	0.2	0.1	-0.3
1,900 to 2,300	1.4	1.9	...	0.9	0.1	1.8
2,300 to 2,700	-0.1	0.0	...	0.1	0.0	-0.1
2,700 and over	0.0	-0.1	\ldots	0.0	-0.2	0.1

2,700 and over
Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded.
Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table 13 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for union status, industrial structure, job conditions and demographic characteristics, 2004

Categories of annual work hours	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia
	Percentage distribution (f_{5})					
Fewer than 1,100	15.9	12.4	12.6	13.0	13.1	14.3
1,100 to 1,500	7.2	6.9	5.7	5.6	6.7	7.9
1,500 to 1,900	14.7	27.1	15.7	14.5	14.0	17.3
1,900 to 2,300	51.0	47.9	57.8	54.5	55.3	49.9
2,300 to 2,700	6.8	3.7	4.9	6.7	5.2	4.6
2,700 and over	4.5	2.1	3.2	5.7	5.7	6.0
	Percentage difference from Ontario, accounting for union status, industrial structure, job conditionsand demographic characteristics					
Fewer than 1,100	3.3	-0.2	...	0.4	0.5	1.7
1,100 to 1,500	1.5	1.2	\ldots	-0.1	1.0	2.2
1,500 to 1,900	-1.0	11.4	\ldots	-1.2	-1.7	1.6
1,900 to 2,300	-6.8	-9.9	\ldots	-3.3	-2.5	-7.9
2,300 to 2,700	1.9	-1.2	\ldots	1.8	0.3	-0.3
2,700 and over	1.3	-1.1	...	2.5	2.5	2.8
	Percentage contribution of demographic characteristics ($f_{s}-f_{f}$)					
Fewer than 1,100	-0.2	0.0	...	-0.2	0.4	0.1
1,100 to 1,500	-0.2	0.1	\ldots	-0.1	-0.3	-0.2
1,500 to 1,900	-0.3	-0.1	\ldots	0.2	-0.1	0.6
1,900 to 2,300	0.4	0.2	\cdots	0.0	0.0	-0.6
2,300 to 2,700	0.3	0.0	\ldots	0.0	0.0	0.0
2,700 and over	0.2	0.0	\ldots	0.1	-0.1	0.1

not applicable
Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Appendix A. Description of the DFL decomposition ${ }^{10}$

In Section 5 of this paper, our objective is to estimate what would be the distribution of work hours if a region had the same observational characteristics as another region of reference (i.e. Ontario). This can be done by decomposing the differences in work hours into parts attributable to differences in observable factors between the two regions. We begin by defining individual observations as a vector (Y, Z, r), consisting of work hours Y, a vector of observable characteristics Z, and a region r. Hence, the density of work hours in a particular region can be defined as

$$
\begin{equation*}
f_{r}(Y) \equiv f\left(Y ; r_{Y}=r, r_{Z}=r\right) \tag{A-1}
\end{equation*}
$$

The estimation of counterfactual densities always involves two regions: Ontario (which we denote as ' $O N$ ') and the region of interest (which we denote as ' $O R$ '). For instance, the expression $f_{r}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{Z}=O R\right)$ represents the observed distribution of work hours in the region of interest, whereas the expression $f_{r}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{Z}=O N\right)$ represents the observed distribution of work hours that would have prevailed in the region of interest if the characteristics of this region were similar to Ontario.

Our vector of characteristics Z has four components, which we consider in the following primary sequence: union status U, industrial structure S, general employment conditions L and demographic characteristics X. Job conditions include firm size dummies and dummies accounting for the level of management responsibilities. Demographic characteristics include a gender dummy, family situation dummies, education level dummies, work experience and work experience squared. We examine the contribution of each of the four factors (or groups of factors) separately in explaining differences in the distribution of work hours.

Following DFL, we apply the multiplicative properties of conditional distributions to Equation (A-1), so that the density of hours in the region of interest $O R$ can be expressed as:

$$
\begin{equation*}
f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O R, r_{S L, X}=O R, r_{L \mid X}=O R, r_{X}=O R\right) \tag{A-2}
\end{equation*}
$$

For each component, the estimation of counterfactual densities relies on the estimation and application of a 'reweighting' function, applied on a sequential basis. For instance, consider union status in Ontario and Quebec. In order to impose the Ontario distribution of union membership on the Quebec distribution of working hours, it is necessary to downweight union members by a factor equal to the percentage difference in the share of unionized workers between Ontario and Quebec (and upweight individuals that do not carry union cards in Quebec) because the share of unionized workers is much larger in Quebec. In terms of notation, this translates into the following expression:

$$
\begin{equation*}
f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O N, r_{S L, X}=O R, r_{L \mid X}=O R, r_{X}=O R\right) \tag{A-3}
\end{equation*}
$$

In our example, this simply represents the density of working hours that would prevail in Quebec if the probability of being unionized in Quebec (conditional on the industrial structure, job

[^7]conditions and demographic characteristics) was similar to the same Ontario probability, but with hours otherwise determined by the same distributional characteristics prevailing in Quebec.

More formally, the distribution of Equation (A-3) can be expressed as

$$
\begin{align*}
& f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O N, r_{S L, X}=O R, r_{L \mid X}=O R, r_{X}=O R\right) \\
& =\iiint \int_{d F}^{f\left(Y \mid U, S, L, X, r_{Y}=O R\right) \cdot d F\left(U \mid S, L, X, r_{U \mid S, L, X}=O N\right)} . \tag{A-4}\\
& =\iiint \int_{d F}^{f\left(Y \mid U, S, L, X, r_{Y}=O R\right) \cdot \Psi} \begin{array}{l}
\text { (S|S,L,X}
\end{array} \cdot d F\left(U \mid S, L, X, r_{U \mid S, L, X}=O R\right) .
\end{align*}
$$

The term $\Psi_{U \mid S, L, X}$ is the 'reweighting function,' which can be estimated as follows:

$$
\begin{align*}
& \Psi_{U \mid S, L, X} \\
& \equiv \frac{d F\left(U \mid S, L, X, r_{U \mid S, L, X}=O N\right)}{d F\left(U \mid S, L, X, r_{U \mid S, L, X}=O R\right)} \tag{A-5}\\
& =U \cdot\left(\frac{\operatorname{Pr}\left(U=1 \mid S, L, X, r_{U \mid S, L, X}=O N\right.}{\operatorname{Pr}\left(U=1 \mid S, L, X, r_{U \mid S, L, X}=O R\right.}\right)+(1-U) \cdot\left(\frac{\operatorname{Pr}\left(U=0 \mid S, L, X, r_{U \mid S, L, X}=O N\right.}{\operatorname{Pr}\left(U=0 \mid S, L, X, r_{U \mid S, L, X}=O R\right.}\right)
\end{align*}
$$

where the union status U only takes the value 0 or 1 . The weight $\Psi_{\text {USS,L,X }}$ simply reflects the difference in the probability of being unionized between Ontario and Quebec among individuals with characteristics (S, L, X). In practice, the conditional probabilities in Equation (A-5) can be estimated by using standard models such as a probit or logit, and then using fitted values.

Section 2 has shown that hours may vary across regions because of compositional differences in the industrial structure. These differences can be accounted for by applying the Ontario distribution of industrial categories on the region of interest:

$$
\begin{align*}
& f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O N, r_{S \mid L, X}=O N, r_{L L X}=O R, r_{X}=O R\right) \\
& =\iiint \int_{d F\left(S \mid L, X, r_{S L, X}=O N\right) \cdot d F\left(L \mid X, r_{L X X}=O R\right) \cdot d F\left(X \mid r_{X}=O R\right)}^{f\left(Y, S, r_{Y}=O R\right) \cdot d F\left(U \mid S, L, X, r_{U \mid, L, X}=O N\right) .} \tag{A-6}\\
& =\iiint \int_{d F\left(S \mid L, X, r_{S L L, X}=O R\right) \cdot d F\left(L \mid X, r_{L \backslash X}=O R\right) \cdot d F\left(X \mid r_{X}=O R\right)}^{f\left(Y, S, L, X, r_{Y}=O R\right) \cdot \Psi_{U \mid S, L, X} \cdot d F\left(U \mid S, L, X, r_{U \mid, L, X}=O R\right) \cdot \Psi_{S L, X} .}
\end{align*}
$$

Where $\Psi_{S L L, X}$ can be defined as follows:

$$
\begin{align*}
& \Psi_{S \mid L, X} \\
& \equiv \frac{d F\left(S \mid L, X, r_{S \mid L, X}=O N\right)}{d F\left(S \mid L, X, r_{S \mid L, X}=O R\right)}=\sum_{k=1}^{n} I_{k} \cdot\left(\frac{\operatorname{Pr}\left(S=k \mid L, X, r_{U \mid S, L, X}=O N\right.}{\operatorname{Pr}\left(S=k \mid L, X, r_{U \mid S, L, X}=O R\right.}\right) \tag{A-7}
\end{align*}
$$

where $I_{k}=1$ if $S=k$ and $I_{k}=0$ otherwise. With k possible outcomes (corresponding to a specific number of industrial categories), these probabilities can be estimated by using a multinomial logit model, which has the appropriate properties to deal with unordered polychotomous dependent variables. ${ }^{11}$

Section 2 has also shown that job conditions may also influence the distribution of working time. This includes a variety of factors, which we regroup under the term L. We account for these conditions by including another reweighting function in the density of hours:

$$
\begin{align*}
& f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U S, L, X}=O N, r_{S L, X}=O N, r_{L X X}=O N, r_{X}=O R\right) \\
& =\iiint \int_{d F\left(S \mid L, X, r_{S L, X}=O N\right)}^{f\left(Y \mid U, S, L, X, r_{Y}=O R\right) \cdot d F\left(U \mid S, L, X, r_{U S, L, X}=O N\right)} . \tag{A-8}\\
& =\iiint \int_{d F\left(X, r_{L \mid X}=O N\right) \cdot d F\left(X \mid r_{X}=O R\right)}^{f\left(Y \mid U, S, L, X, r_{Y}=O R\right) \cdot \Psi_{U \mid S, L, X} \cdot d F\left(U \mid S, L, X, r_{U \mid, L, X}=O R\right) \cdot \Psi_{S L, X}} \begin{array}{l}
\left.d, X, r_{S L, X}=O R\right) \cdot \Psi_{L \mid X} \cdot d F\left(L \mid X, r_{L \mid X}=O R\right) \cdot d F\left(X \mid r_{X}=O R\right)
\end{array}
\end{align*}
$$

Using Bayesian rule, the reweighting function $\Psi_{L X}$ can be estimated as follows:

$$
\begin{align*}
& \Psi_{L \mid X} \\
& \equiv \frac{d F\left(L \mid X, r_{L \mid X}=O N\right)}{d F\left(L \mid X, r_{L \mid X}=O R\right)} \tag{A-9}\\
& =\frac{\operatorname{Pr}\left(r_{L}=O N \mid L, X\right)}{\operatorname{Pr}\left(r_{L}=O R \mid L, X\right)} \cdot \frac{\operatorname{Pr}\left(r_{L}=O R \mid X\right)}{\operatorname{Pr}\left(r_{L}=O N \mid X\right)}
\end{align*}
$$

Again, these relative probabilities of being in either sample can be estimated with logit models. Finally, we account for demographic characteristics by computing another reweighting function Ψ_{X}, which can be obtained as follows (again using Bayesian rule):

$$
\begin{align*}
& \Psi_{X} \\
& \equiv \frac{d F\left(X, r_{X}=O N\right)}{d F\left(X, r_{X}=O R\right)} \tag{A-10}\\
& =\frac{\operatorname{Pr}\left(r_{X}=O N \mid X\right)}{\operatorname{Pr}\left(r_{X}=O R \mid X\right)} \cdot \frac{\operatorname{Pr}\left(r_{X}=O R\right)}{\operatorname{Pr}\left(r_{X}=O N\right)}
\end{align*}
$$

This final weighting function corresponds to the relative probability of observing a worker with characteristics X in the Ontario sample (versus the other region of interest)-normalized by the unconditional probability of being in either sample.
11. We use the following industrial categories for the decompositions related to the distributions of annual work hours: agriculture; oil and gas; construction and utilities; manufacturing; consumer services; business services; education services; health care services; wholesale and transportation; arts, entertainment and recreation (includes information and culture); all other services; and public administration.

The following table summarizes the sequence of our primary-order decomposition:

Distribution	Weight
1. Region of interest, distribution of work hours	
$f_{1}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O R, r_{S L, X}=O R, r_{L \mid X}=O R, r_{X}=O R\right)$	$\theta_{O R}$
2. (1) with Ontario's union status	
$f_{2}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O N, r_{S L, X}=O R, r_{L \mid X}=O R, r_{X}=O R\right)$	$\theta_{O R} \cdot \Psi_{U \mid S, L, X}$
3. (2) with Ontario's distribution of industries	
$f_{3}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O N, r_{S L, X}=O N, r_{L \mid X}=O R, r_{X}=O R\right)$	$\theta_{O R} \cdot \Psi_{U \mid S, L, X} \cdot \Psi_{S \mid L, X}$
4. (3) with Ontario's general employment conditions	
$f_{4}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O N, r_{S L, X}=O N, r_{L \mid X}=O N, r_{X}=O R\right)$	$\theta_{O R} \cdot \Psi_{U \mid S, L, X} \cdot \Psi_{S L L, X} \cdot \Psi_{L \mid X}$
5. (4) with Ontario's demographic characteristics	
$f_{5}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{U \mid S, L, X}=O N, r_{S L L, X}=O N, r_{L \mid X}=O N, r_{X}=O N\right)$	$\theta_{O R} \cdot \Psi_{U \mid S, L, X} \cdot \Psi_{S \mid L, X} \cdot \Psi_{L \mid X} \cdot \Psi_{X}$
6. Ontario distribution of work hours	
$f_{6}(Y) \equiv f\left(Y ; r_{Y}=O N, r_{U \mid S, L, X}=O N, r_{S L L, X}=O N, r_{L I X}=O N, r_{X}=O N\right)$	$\theta_{O N}$

Hence, the relative contribution of the union status to the total difference in work hours densities corresponds to $\left(f_{2}-f_{1}\right)$; the contribution attributable to compositional differences in the industrial structure is equal to $\left(f_{3}-f_{2}\right)$; the contribution of differences in job conditions is $\left(f_{4}-f_{3}\right)$; the contribution related to demographic characteristics is $\left(f_{5}-f_{4}\right)$; and the contribution of all other factors (unobservables) is simply $\left(f_{6}-f_{5}\right)$. Owing to concerns that the estimated effects of each factor may be affected by the order of the decomposition, we also generated alternative results from the reverse-order decomposition-but this did not significantly alter the conclusions of this report (the exact procedure used to generate reverse-order weights and complete results from the reverse order decomposition are shown in Appendix B).

Appendix B. Description of the reverse decomposition

This section explains the method used for the reverse DFL decomposition. We begin by defining the density of hours in the region of interest $O R$ as

$$
\begin{equation*}
f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{X \mid L, S, U}=O R, r_{L \mid S, U}=O R, r_{S U}=O R, r_{U}=O R\right) \tag{B-1}
\end{equation*}
$$

The density of working hours that would prevail in the region of interest if the demographic characteristics were observationally similar to those in Ontario can be expressed as follows:

$$
\begin{align*}
& f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{X \mid L, S, U}=O N, r_{L \mid, U}=O R, r_{S U}=O R, r_{U}=O R\right) \\
& =\iiint \int_{d F\left(L \mid S, U, r_{L \mid S, U}=O R\right) \cdot d F\left(S \mid U, r_{S U}=O R\right) \cdot d F\left(U \mid r_{U}=O R\right)}^{f\left(Y \mid X, L, S, U, r_{Y}=O R\right) \cdot d F\left(X \mid L, S, U, r_{X \mid L, S}=O N\right)} . \tag{B-2}\\
& =\iiint \int_{d F\left(L \mid S, U, r_{L \mid S, U}=O R\right) \cdot d F\left(S \mid U, r_{S U}=O R\right) \cdot d F\left(U \mid r_{U}=O R\right)}^{f\left(Y \mid X, L S, U, r_{Y}=O R\right) \cdot \Psi \Psi_{X \mid L, U} \cdot d F\left(X \mid L, S, U, r_{X \mid, S, U}=O R\right)} .
\end{align*}
$$

This process can be repeated on a sequential basis for each of the components. In the end, the density of work hours that would prevail in the region of interest if demographic characteristics, industrial structure, job conditions and union status were similar to those in Ontario will be

$$
\begin{align*}
& f_{O R}(Y) \equiv f\left(Y ; r_{Y}=O R, r_{X \mid L, S, U}=O N, r_{L S, U}=O R, r_{S U}=O R, r_{U}=O R\right) \\
& =\iiint \int_{d F}^{f\left(Y \mid X, L, S, U, r_{Y}=O R\right) \cdot d F\left(X \mid L, S, U, r_{X, L, S, U}=O N\right)} \tag{B-3}\\
& =\iiint \int_{d F}^{f\left(Y \mid X, L, S, U, U, r_{Y}=O R\right) \cdot \Psi_{X \mid L, S, U} \cdot d F\left(X \mid L, S, U, r_{X \mid, S, U}=O R\right) \cdot d F\left(S \mid U, r_{S U}=O R\right) \cdot d F\left(U \mid r_{U}=O R\right) \cdot \Psi_{L \mid S, U}} \begin{array}{l}
\text { (L|S,U,} \left.r_{L \mid S, U}=O R\right) \cdot \Psi_{S \mid U} \cdot d F\left(S \mid U, r_{S U}=O R\right) \cdot \Psi_{U} \cdot d F\left(U \mid r_{U}=O R\right)
\end{array}
\end{align*}
$$

The reweighting function Ψ_{U} is estimated as follows:

$$
\begin{align*}
& \Psi_{U} \\
& \equiv \frac{d F\left(U \mid r_{U}=O N\right)}{d F\left(U \mid r_{U}=O R\right)} \tag{B-4}\\
& =U \cdot\left(\frac{\operatorname{Pr}\left(U=1 \mid r_{U}=O N\right.}{\operatorname{Pr}\left(U=1 \mid r_{U}=O R\right.}\right)+(1-U) \cdot\left(\frac{\operatorname{Pr}\left(U=0 \mid r_{U}=O N\right.}{\operatorname{Pr}\left(U=0 \mid r_{U}=O R\right.}\right)
\end{align*}
$$

where the union status U only takes the value 0 or 1 . This reweighting function simply reflects the difference in the unconditional probabilities of being unionized between Ontario and the region of interest.

The reweighting function $\Psi_{S U}$ is defined as follows:

$$
\begin{align*}
& \Psi_{S U} \\
& \equiv \frac{d F\left(S \mid U, r_{S U}=O N\right)}{d F\left(S \mid U, r_{S U}=O R\right)}=\sum_{k=1}^{n} I_{k} \cdot\left(\frac{\operatorname{Pr}\left(S=k \mid U, r_{S U}=O N\right.}{\operatorname{Pr}\left(S=k \mid U, r_{S U}=O R\right.}\right) \tag{B-5}
\end{align*}
$$

where $I_{k}=1$ if $S=k$ and $I_{k}=0$ otherwise. There are k possible outcomes, corresponding to a specific number of industrial categories. In practice these probabilities can be estimated through simple cross-tabulation of the industrial structure and union status outcomes. In other words, we calculate the percentage of observations that fall in to each of the 12 categories defined by the industrial structure and two possible values (0 and 1) for the union status variable. Observations falling into a particular cell for the reference region are upweighted or downweighted by the proportional difference in the percentage share of that cell between Ontario and the region of interest.

Using Bayesian rule, we define the reweighting function $\Psi_{L \mid S, U}$ in Equation (B-6), in which the relative probability of being in either sample can be estimated with logit models:

$$
\begin{align*}
& \Psi_{L S, U} \\
& \equiv \frac{d F\left(L \mid S, U, r_{L S, U}=O N\right)}{d F\left(L \mid S, U, r_{L S, U}=O R\right)} \tag{B-6}\\
& =\frac{\operatorname{Pr}\left(r_{L}=O N \mid L, S, U\right)}{\operatorname{Pr}\left(r_{L}=O R \mid L, S, U\right)} \cdot \frac{\operatorname{Pr}\left(r_{L}=O R \mid S, U\right)}{\operatorname{Pr}\left(r_{L}=O N \mid S, U\right)}
\end{align*}
$$

Finally, the last reweighting function $\Psi_{X \mid L, S, U}$ can be obtained as follows:
Since

$$
\Psi_{x \mid L, S, U} \cdot \Psi_{L \mid S, U} \cdot \Psi_{S \mid U} \cdot \Psi_{U}=\Psi_{U \mid S, L, X} \cdot \Psi_{S \mid L, X} \cdot \Psi_{L \mid X} \cdot \Psi_{X}
$$

This can be rearranged to estimate our reweighting function as follows:

$$
\begin{equation*}
\Psi_{X \mid L, S, U}=\frac{\Psi_{U \mid S, L, X} \cdot \Psi_{S \mid L, X} \cdot \Psi_{L \mid X} \cdot \Psi_{X}}{\Psi_{L \mid S, U} \cdot \Psi_{S \mid U} \cdot \Psi_{U}} \tag{B-7}
\end{equation*}
$$

One implication of this equality is equivalence of the net effect of the four conditioning factors in the primary-order and reverse-order cases.

For the most part, results from the reverse decomposition (shown in the next pages) confirm the larger role played by differences in the industrial structure in explaining differences in work hours, and also confirm that differences in union status and in demographic characteristics are largely ineffectual in explaining those differences. Hence, results from the reverse order decomposition do not fundamentally differ from primary order results.

Table B. 1 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for demographic characteristics, 2004

Categories of annual work hours	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia
	Percentage distribution					
Fewer than 1,100	17.5	12.6	12.6	13.2	12.9	15.9
1,100 to 1,500	8.2	8.2	5.7	6.8	7.3	8.8
1,500 to 1,900	15.7	29.5	15.7	15.8	15.6	17.8
1,900 to 2,300	47.6	44.0	57.8	52.5	51.4	47.4
2,300 to 2,700	6.4	3.5	4.9	6.3	6.0	4.6
2,700 and over	4.6	2.2	3.2	5.4	6.9	5.5
	Percentage difference from Ontario, accounting for demographic characteristics					
Fewer than 1,100	4.9	0.0	\ldots	0.6	0.3	3.3
1,100 to 1,500	2.5	2.5	\ldots	1.1	1.6	3.1
1,500 to 1,900	0.0	13.8	...	0.1	-0.1	2.1
1,900 to 2,300	-10.2	-13.8	\ldots	-5.3	-6.4	-10.4
2,300 to 2,700	1.5	-1.4	...	1.4	1.1	-0.3
2,700 and over	1.4	-1.0	\ldots	2.2	3.7	2.3
	Percentage contribution of demographic characteristics					
Fewer than 1,100	0.4	-0.6	\ldots	-0.7	0.1	0.3
1,100 to 1,500	-0.2	0.0	\ldots	-0.3	-0.2	0.3
1,500 to 1,900	-0.7	1.6	...	0.4	0.6	0.5
1,900 to 2,300	1.0	-0.9	\ldots	0.7	-0.4	-1.2
2,300 to 2,700	-0.2	-0.1	...	-0.1	-0.5	-0.3
2,700 and over	-0.3	-0.1	\ldots	0.0	0.5	0.3

not applicable
Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table B. 2 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for demographic characteristics and job conditions, 2004

Categories of annual work hours	Atlantic	Quebec	Ontario	Manitoba- Saskatchewan	Alberta	British Columbia
	Percentage distribution					
Fewer than 1,100	16.7	11.7	12.6	12.7	13.1	15.1
1,100 to 1,500	7.8	7.6	5.7	6.5	7.3	8.4
1,500 to 1,900	15.4	29.4	15.7	16.1	15.7	17.3
1,900 to 2,300	48.8	45.7	57.8	52.8	51.0	48.9
2,300 to 2,700	6.5	3.5	4.9	6.4	6.0	4.6
2,700 and over	4.7	2.1	3.2	5.4	6.8	5.7
	Percentage difference from Ontario, accounting for demographic characteristics and job conditions					
Fewer than 1,100	4.1	-0.9	...	0.1	0.5	2.5
1,100 to 1,500	2.1	1.9	...	0.8	1.6	2.7
1,500 to 1,900	-0.3	13.7	\ldots	0.4	0.0	1.6
1,900 to 2,300	-9.0	-12.1	...	-5.0	-6.8	-8.9
2,300 to 2,700	1.6	-1.4	\ldots	1.5	1.1	-0.3
2,700 and over	1.5	-1.1	\ldots	2.2	3.6	2.5
	Percentage contribution of job conditions					
Fewer than 1,100	-0.8	-0.9	\cdots	-0.5	0.2	-0.8
1,100 to 1,500	-0.4	-0.6	\ldots	-0.3	0.0	-0.4
1,500 to 1,900	-0.3	-0.1	\ldots	0.3	0.1	-0.5
1,900 to 2,300	1.2	1.7	\ldots	0.3	-0.4	1.5
2,300 to 2,700	0.1	0.0	\ldots	0.1	0.0	0.0
2,700 and over	0.1	-0.1	\ldots	0.0	-0.1	0.2
... not applicable Notes: Missing observ Weights for the Source: Statistics Cana	for union aining sam 004 Surve	industrial e been adj bour and	ure, job co upwards Dynamic	ns or demograph ionately to comp	racteristic	xcluded

Table B. 3 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for demographic characteristics, job conditions and industrial structure, 2004

Categories of annual work hours	Atlantic	Quebec	Ontario	ManitobaSaskatchewan	Alberta	British Columbia
	Percentage distribution					
Fewer than 1,100	15.7	11.9	12.6	12.4	13.1	14.2
1,100 to 1,500	7.2	7.0	5.7	5.7	6.7	7.9
1,500 to 1,900	14.8	28.1	15.7	15.1	14.0	17.6
1,900 to 2,300	51.2	47.4	57.8	54.9	55.3	49.7
2,300 to 2,700	6.7	3.5	4.9	6.4	5.2	4.6
2,700 and over	4.4	2.1	3.2	5.4	5.7	6.0
	Percentage difference from Ontario, accounting for demographic characteristics, job conditions and industrial structure					
Fewer than 1,100	3.1	-0.7	...	-0.2	0.5	1.6
1,100 to 1,500	1.5	1.3	\ldots	0.0	1.0	2.2
1,500 to 1,900	-0.9	12.4	...	-0.6	-1.7	1.9
1,900 to 2,300	-6.6	-10.4	-	-2.9	-2.5	-8.1
2,300 to 2,700	1.8	-1.4	\ldots	1.5	. 0.3	-0.3
2,700 and over	1.2	-1.1	\ldots	2.2	2.5	2.8
	Percentage contribution of industrial structure					
Fewer than 1,100	-1.0	0.2	...	-0.3	0.0	-0.9
1,100 to 1,500	-0.6	-0.6	...	-0.8	-0.6	-0.5
1,500 to 1,900	-0.6	-1.3	\ldots	-1.0	-1.7	0.3
1,900 to 2,300	2.4	1.7	...	2.1	4.3	0.8
2,300 to 2,700	0.2	0.0	\ldots	0.0	-0.8	0.0
2,700 and over	-0.3	0.0	\ldots	0.0	-1.1	0.3

not applicable
Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded.
Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

Table B. 4 Percentage distribution of workers aged 25 to 54 across categories of annual work hours after accounting for demographic factors, job conditions, industrial structure and union status, 2004

Categories of annual work hours	Atlantic	Quebec	Ontario	Manitoba- Saskatchewan	Alberta	British Columbia
	Percentage distribution					
Fewer than 1,100	15.9	12.4	12.6	13.0	13.1	14.3
1,100 to 1,500	7.2	6.9	5.7	5.6	6.7	7.9
1,500 to 1,900	14.7	27.1	15.7	14.5	14.0	17.3
1,900 to 2,300	51.0	47.9	57.8	54.5	55.3	49.9
2,300 to 2,700	6.8	3.7	4.9	6.7	5.2	4.6
2,700 and over	4.5	2.1	3.2	5.7	5.7	6.0
	Percentage difference from Ontario, accounting for demographic characteristics, job conditions, industrial structure and union status					
Fewer than 1,100	3.3	-0.2	\ldots	0.4	0.5	1.7
1,100 to 1,500	1.5	1.2	...	-0.1	1.0	2.2
1,500 to 1,900	-1.0	11.4	...	-1.2	-1.7	1.6
1,900 to 2,300	-6.8	-9.9	...	-3.3	-2.5	-7.9
2,300 to 2,700	1.9	-1.2		1.8	0.3	-0.3
2,700 and over	1.3	-1.1	\ldots	2.5	2.5	2.8
	Percentage contribution of union status					
Fewer than 1,100	0.2	0.5	\ldots	0.6	0.0	0.1
1,100 to 1,500	0.0	-0.1	\ldots	-0.1	0.0	0.0
1,500 to 1,900	-0.1	-1.0	..	-0.6	0.0	-0.3
1,900 to 2,300	-0.2	0.5	...	-0.4	0.0	0.2
2,300 to 2,700	0.1	0.2	\ldots	0.3	0.0	0.0
2,700 and over	0.1	0.0	\cdots	0.3	0.0	0.0

not applicable
Notes: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

References

Armstrong, Philip, Tarek M. Harchaoui, Chris Jackson and Faouzi Takhani. 2002. A Comparison of Canada-U.S. Economic Growth in the Information Age, 1981-2000: The Importance of Investment in Information and in Communication Technology. Economic Analysis (EA) Research Paper Series. Catalogue no. 11F0027MIE2002001. Ottawa: Statistics Canada.

Bartman, Ilona and Gaétan Garneau. 1998. Comparison of Hours Worked Based on the Survey of Labour and Income Dynamics and the Labour Force Survey. Income Research Paper Series. Catalogue no. 75F0002MIE1998014. Ottawa: Statistics Canada.

Bell, Linda and Richard B. Freeman. 2001. "Working Hard." In Working Time in Comparative Perspective, Volume 1: Patterns, Trends, and Policy Implications of Earnings Inequality and Unemployment. Ging Wong and Garnett Picot (eds.). Kalamazoo, Mich.: W.E. Upjohn Institute for Employment Research.

Bell, Linda A. and Richard B. Freeman. 2000. The Incentive for Working Hard: Explaining Hours Worked Differences in the U.S. and Germany. NBER Working Paper No. 8051. Cambridge, Mass.: National Bureau of Economic Research, Inc.

Bell, Linda and Richard Freeman. 1996. "Why do Americans and Germans Work Different Hours?" NBER Working Paper No. 4808. Cambridge, Mass.: National Bureau of Economic Research, Inc.

Blundell, Richard and Thomas Macurdy. 1999. "Labor supply: A review of alternative approaches." In Handbook of Labor Economics Volume 3A. Orley C. Ashenfelter and David Card (eds.). Amsterdam: Elsevier Science. 1559-1695.

Daly, Mary C. and Robert G. Valletta. 2004. Inequality and Poverty in the United States: The Effects of Rising Male Wage Dispersion and Changing Family Behaviour. Federal Reserve Bank of San Fransisco Research Paper no. 2000-06 (revision). San Francisco: Federal Reserve Bank of San Francisco.

Devereux, Paul J. 2004. "Changes in Relative Wages and Family Labor Supply." The Journal of Human Resources. 39 (3): 696-722.

DiNardo, John E., Nicole M. Fortin and Thomas Lemieux. 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach." Econometrica. 64 (5): 1001-1044.

Drolet, Marie and René Morissette. 1998. Recent Canadian Evidence on Job Quality by Firm Size. Analytical Studies Branch Research Paper Series. Catalogue no. 11F0019MIE1998128. Ottawa: Statistics Canada.

Fortin, Pierre. 2003. "Differences in Annual Work Hours per Capita Between the United States and Canada." International Productivity Monitor. 6 (Spring): 38-46.

Frederick, Judith and Janet Fast. 1998. The Time of Our Lives: Juggling Work and Leisure over the Life Cycle. Days of our Lives: Time Use and Transitions over the Life Course. Catalogue no. 89-584-MIE2003004. Ottawa: Statistics Canada.

Johnson, Susan and Peter Kuhn. 2004. "Increasing Male Earnings Inequality in Canada and the United States, 1981-1997: The Role of Hours Changes versus Wage Changes." Canadian Public Policy. 30 (2): 155-175.

Heisz, Andrew and Sébastien LaRochelle-Côté. 2006. Work Hours Instability in Canada. Analytical Studies Branch Research Paper Series. Catalogue no. 11F0019MIE2006278. Ottawa: Statistics Canada.

Heisz, Andrew and Sébastien LaRochelle-Côté. 2003. Working Hours in Canada and the United States. Analytical Studies Branch Research Paper Series. Catalogue no. 11F0019MIE2003209. Ottawa: Statistics Canada.

Heisz, Andrew and Sylvain Côté. 1999. Are Jobs Less Stable in the Services Sector? Analytical Paper Series - Service Industries Division. Catalogue no. 63F0002XIB1999022. Ottawa: Statistics Canada.

Higgins, Chris and Linda Duxbury. 2003. Where to Work in Canada? An Examination of Regional Differences in Work Life Practices. Report commissioned for the BC Work-Life Summit 2003.

Higgins, Chris and Linda Duxbury. 2002. The 2001 National Work-Life Conflict Study: Report One. Final report, March 2002. Ottawa: Public Health Agency of Canada.

Institute for Competitiveness and Prosperity. 2006. Time on the job: Intensity and Ontario's prosperity gap. Working paper no. 9. September. Toronto: Institute for Competitiveness and Prosperity.

Morissette, René, John Myles and Garnett Picot. 1994. "Earnings Inequality and the Distribution of Working Time in Canada." Canadian Business Economics. 2 (3): 3-6.

Oaxaca, Ronald. 1973. "Male-Female Wage Differentials in Urban Labor Markets." International Economic Review. 14 (3): 693-709.

OECD. 2004. Employment Outlook. July. Paris: Organisation for Economic Co-operation and Development.

OECD. 2001. Employment Outlook. July. Paris: Organisation for Economic Co-operation and Development.

OECD. 1997. Employment Outlook. July. Paris: Organisation for Economic Co-operation and Development.

OECD. 1995. Employment Outlook. July. Paris: Organisation for Economic Co-operation and Development.

Osberg, Lars. 2001. Labour Supply and Inequality Trends in the United States and Elsewhere. Paper presented at the CSLS/IRPP Conference on Linkages Between Economic Growth and Inequality. January 26 and 27, Château Laurier, Ottawa.

Pannozzo, Linda and Ronald Colman. 2004. Working Time and the Future of Work in Canada: A Nova Scotia GPI Case Study. Glen Haven, N.S.: GPI Atlantic.

Picot, Garnett. 2001. "Working Time, Wages and Earnings Inequality among Men and Women in Canada, 1981-1999." In Working Time in Comparative Perspective, Volume 1: Patterns, Trends, and Policy Implications of Earnings Inequality and Unemployment. Ging Wong and Garnett Picot (eds.). Kalamazoo, Mich.: W.E. Upjohn Institute for Employment Research.

Scott, Heather K., Emile Tompa and Scott Trevithick. 2004. The Health Consequences of Underemployment. Toronto: Institute for Work and Health.

Sharpe, Andrew. 2003. "Why Are Americans More Productive than Canadians?" International Productivity Monitor. 6 (Spring): 19-37.

Shields, Margot. 1999. "Long working hours and health." Health Reports. 11 (2). 33-48. Catalogue no. 82-003-XIE. Ottawa: Statistics Canada.

Statistics Canada. 2005. Women in Canada: A Gender-based Statistical Report. 5th edition. Catalogue no. 89-503-XIE. Ottawa: Statistics Canada.

Statistics Canada. 1998. Permanent Layoffs, Quits and Hirings in the Canadian Economy, 19781995. Catalogue no. 71-539-XIB. Ottawa: Statistics Canada.
van Ark, Bart. 2002. "Understanding Productivity and Income Differentials Among OECD Countries: A Survey." In The Review of Economic Performance and Social Progress 2002: Towards a Social Understanding of Productivity. Vol. 2. Andrew Sharpe, France SaintHilaire and Keith Banting (eds.). Montreal: Institute for Research on Public Policy and Ottawa: Centre for the study of Living Standards.

Williams, Cara. 2003. "Stress at work." Canadian Social Trends. 70 (Autumn): 7-13. Catalogue no. 11-008. Ottawa: Statistics Canada.

ANALYTICAL STUDIES RESEARCH PAPER SERIES

No. I Behavioural Response in the Context of Socio-Economic Microanalytic Simulation, Lars Osberg (April 1986)
No. 2 Unemployment and Training, Garnett Picot (1987)
No. 3 Homemaker Pensions and Lifetime Redistribution, Michael Wolfson (August 1987)
No. 4 Modeling the Lifetime Employment Patterns of Canadians, Garnett Picot (Winter 1986)
No. 5 Job Loss and Labour Market Adjustment in the Canadian Economy, Garnett Picot and Ted Wannell (1987)
No. 6 A System of Health Statistics: Toward a New Conceptual Framework for Integrating Health Data, Michael C. Wolfson (March 1990)

No. 7 A Prototype Micro-Macro Link for the Canadian Household Sector, Hans J. Adler and Michael C. Wolfson (August 1987)

No. 8 Notes on Corporate Concentration and Canada's Income Tax, Michael C. Wolfson (October 1987)
No. 9 The Expanding Middle: Some Canadian Evidence on the Deskilling Debate, John Myles (Fall 1987)
No. 10 The Rise of the Conglomerate Economy, Jorge Niosi (1987)
No. 11 Energy Analysis of Canadian External Trade: 1971 and 1976, K.E. Hamilton (1988)
No. 12 Net and Gross Rates of Land Concentration, Ray D. Bollman and Philip Ehrensaft (1988)
No. 13 Cause-Deleted Life Tables for Canada (1972 to 1981): An Approach Towards Analyzing Epidemiological Transition, Dhruva Nagnur and Michael Nagrodski (November 1987)

No. 14 The Distribution of the Frequency of Occurrence of Nucleotide Subsequences, Based on Their Overlap Capability, Jane F. Gentleman and Ronald C. Mullin (1988)

No. 15 Immigration and the Ethnolinguistic Character of Canada and Quebec, Réjean Lachapelle (1988)
No. 16 Integration of Canadian Farm and Off-Farm Markets and the Off-Farm Work of Women, Men and Children, Ray D. Bollman and Pamela Smith (1988)

No. 17 Wages and Jobs in the 1980s: Changing Youth Wages and the Declining Middle, J. Myles, G. Picot and T. Wannell (July 1988)

No. 18 A Profile of Farmers with Computers, Ray D. Bollman (September 1988)
No. 19 Mortality Risk Distributions: A Life Table Analysis, Geoff Rowe (July 1988)
No. 20 Industrial Classification in the Canadian Census of Manufactures: Automated Verification Using Product Data, John S. Crysdale (January 1989)

No. 21 Consumption, Income and Retirement, A.L. Robb and J.B. Burbridge (1989)
No. 22 Job Turnover in Canada's Manufacturing Sector, John R. Baldwin and Paul K. Gorecki (Summer 1989)
No. 23 Series on The Dynamics of the Competitive Process, John R. Baldwin and Paul K. Gorecki (1990)
A. Firm Entry and Exit Within the Canadian Manufacturing Sector.
B. Intra-Industry Mobility in the Canadian Manufacturing Sector.
C. Measuring Entry and Exit in Canadian Manufacturing: Methodology.
D. The Contribution of the Competitive Process to Productivity Growth:

The Role of Firm and Plant Turnover.
E. Mergers and the Competitive Process.
F. n / a
G. Concentration Statistics as Predictors of the Intensity of Competition.
H. The Relationship Between Mobility and Concentration for the Canadian Manufacturing Sector.

No. 24 Mainframe SAS Enhancements in Support of Exploratory Data Analysis, Richard Johnson, Jane F. Gentleman and Monica Tomiak (1989)

No. 25 Dimensions of Labour Market Change in Canada: Intersectoral Shifts, Job and Worker Turnover, John R. Baldwin and Paul K. Gorecki (1989)

No. 26 The Persistent Gap: Exploring the Earnings Differential Between Recent Male and Female Postsecondary Graduates, Ted Wannell (1989)

No. 27 Estimating Agricultural Soil Erosion Losses From Census of Agriculture Crop Coverage Data, Douglas F. Trant (1989)

No. 28 Good Jobs/Bad Jobs and the Declining Middle: 1967-1986, Garnett Picot, John Myles, Ted Wannel (1990)
No. 29 Longitudinal Career Data for Selected Cohorts of Men and Women in the Public Service, 1978-1987, Garnett Picot and Ted Wannell (1990)

No. 30 Earnings and Death-Effects Over a Quarter Century, Michael Wolfson, Geoff Rowe, Jane F. Gentleman and Monica Tomiak (1990)

No. 31 Firm Response to Price Uncertainty: Tripartite Stabilization and the Western Canadian Cattle Industry, Theodore M. Horbulyk (1990)

No. 32 Smoothing Procedures for Simulated Longitudinal Microdata, Jane F. Gentleman,Dale Robertson and Monica Tomiak (1990)

No. 33 Patterns of Canadian Foreign Direct Investment Abroad, Paul K. Gorecki (1990)
No. 34 POHEM - A New Approach to the Estimation of Health Status Adjusted Life Expectancy, Michael C. Wolfson (1991)

No. 35 Canadian Jobs and Firm Size: Do Smaller Firms Pay Less?, René Morissette (1991)
No. 36 Distinguishing Characteristics of Foreign High Technology Acquisitions in Canada's Manufacturing Sector, John R. Baldwin and Paul K. Gorecki (1991)

No. 37 Industry Efficiency and Plant Turnover in the Canadian Manufacturing Sector, John R. Baldwin (1991)
No. 38 When the Baby Boom Grows Old: Impacts on Canada's Public Sector, Brian B. Murphy and Michael C. Wolfson (1991)

No. 39 Trends in the Distribution of Employment by Employer Size: Recent Canadian Evidence, Ted Wannell (1991)
No. 40 Small Communities in Atlantic Canada: Their Industrial Structure and Labour Market Conditions in the Early 1980s, Garnett Picot and John Heath (1991)

No. 41 The Distribution of Federal/Provincial Taxes and Transfers in Rural Canada, Brian B. Murphy (1991)

No. 42 Foreign Multinational Enterprises and Merger Activity in Canada, John Baldwin and Richard Caves
No. 43 Repeat Users of the Unemployment Insurance Program, Miles Corak (1992)
No. 44 POHEM -- A Framework for Understanding and Modeling the Health of Human Populations, Michael C. Wolfson (1992)

No. 45 A Review of Models of Population Health Expectancy: A Micro-Simulation Perspective, Michael C. Wolfson and Kenneth G. Manton (1992)

No. 46 Career Earnings and Death: A Longitudinal Analysis of Older Canadian Men, Michael C. Wolfson, Geoff Rowe, Jane Gentleman and Monica Tomiak (1992)

No. 47 Longitudinal Patterns in the Duration of Unemployment Insurance Claims in Canada, Miles Corak (1992)
No. 48 The Dynamics of Firm Turnover and the Competitive Process, John Baldwin (1992)
No. 49 Development of Longitudinal Panel Data from Business Registers: Canadian Experience, John Baldwin, Richard Dupuy and William Penner (1992)

No. 50 The Calculation of Health-Adjusted Life Expectancy for a Canadian Province Using a Multi-Attribute Utility Function: A First Attempt, J.-M. Berthelot, R. Roberge and M.C. Wolfson (1992)

No. 51 Testing the Robustness of Entry Barriers, J.R. Baldwin and M. Rafiquzzaman (1993)
No. 52 Canada's Multinationals: Their Characteristics and Determinants, Paul K. Gorecki (1992)

No. 53 The Persistence of Unemployment: How Important were Regional Extended Unemployment Insurance Benefits?, Miles Corak, Stephen Jones (1993)

No. 54 Cyclical Variation in the Duration of Unemployment Spells, Miles Corak (1992)
No. 55 Permanent Layoffs and Displaced Workers: Cyclical Sensitivity, Concentration, and Experience Following the Layoff, Garnett Picot and Wendy Pyper (1993)

No. 56 The Duration of Unemployment During Boom and Bust, Miles Corak (1993)
No. 57 Getting a New Job in 1989-90 in Canada, René Morissette (1993)
No. 58 Linking Survey and Administrative Data to Study Determinants of Health, P. David, J.-M. Berthelot and C. Mustard (1993)

No. 59 Extending Historical Comparability in Industrial Classification, John S. Crysdale (1993)
No. 60 What is Happening to Earnings Inequality in Canada?, R. Morissette, J. Myles and G. Picot (June 1994)
No. 61 Structural Change in the Canadian Manufacturing Sector, (1970-1990), J. Baldwin and M. Rafiquzzaman (July 1994)

No. 62 Unemployment Insurance, Work Disincentives, and the Canadian Labour Market: An Overview, Miles Corak (January 1994)

No. 63 Recent Youth Labour Market Experiences in Canada, Gordon Betcherman and René Morissette (July 1994)
No. 64 A Comparison of Job Creation and Job Destruction in Canada and the United States, John Baldwin, Timothy Dunne and John Haltiwanger (July 1994)

No. 65 What is Happening to Weekly Hours Worked in Canada?, René Morissette and Deborah Sunter (June 1994)
No. 66 Divergent Inequalities -- Theory, Empirical Results and Prescriptions, Michael C. Wolfson (May 1995)
No. 67 XEcon: An Experimental / Evolutionary Model of Economic Growth, Michael C. Wolfson (June 1995)
No. 68 The Gender Earnings Gap Among Recent Postsecondary Graduates, 1984-92, Ted Wannell and Nathalie Caron (November 1994)

No. 69 A Look at Employment-Equity Groups Among Recent Postsecondary Graduates: Visible Minorities, Aboriginal Peoples and the Activity Limited, Ted Wannell and Nathalie Caron (November 1994)

No. 70 Employment Generation by Small Producers in the Canadian Manufacturing Sector, John R. Baldwin and Garnett Picot (November 1994)

No. 71 Have Small Firms Created a Disproportionate Share of New Jobs in Canada? A Reassessment of the Facts, Garnett Picot, John Baldwin and Richard Dupuy (November 1994)

No. 72 Selection Versus Evolutionary Adaptation: Learning and Post-Entry Performance, J. Baldwin and M. Rafiquzzaman (May 1995)

No. 73 Business Strategies in Innovative and Non-Innovative Firms in Canada, J. Baldwin and J. Johnson (February 1995)

No. 74 Human Capital Development and Innovation: The Case of Training in Small and Medium Sized-Firms, J. Baldwin and J. Johnson (March 1995)

No. 75 Technology Use and Industrial Transformation: Emprirical Perspectives, John Baldwin, Brent Diverty and David Sabourin (August 1995)

No. 76 Innovation: The Key to Success in Small Firms, John R. Baldwin (February 1995)
No. 77 The Missing Link: Data on the Demand side of Labour Markets, Lars Osberg (April 1995)
No. 78 Restructuring in the Canadian Manufacturing Sector from 1970 to 1990: Industry and Regional Dimensions of Job Turnover, J. Baldwin and M. Rafiquzzaman (July 1995)

No. 79 Human Capital and the Use of Time, Frank Jones (June 1995)
No. 80 Why Has Inequality in Weekly Earnings Increased in Canada?, René Morissette (July 1995)
No. 81 Socio-Economic Statistics and Public Policy: A New Role For Microsimulation Modeling, Michael C. Wolfson (July 1995)

No. 82 Social Transfers, Changing Family Structure, and Low Income Among Children, Garnett Picot and John Myles (September 1995)

No. 83 Alternative Measures of the Average Duration of Unemployment, Miles Corak and Andrew Heisz (October 1995)

No. 84 The Duration of Unemployment: A User Guide, Miles Corak and Andrew Heisz (December 1995)
No. 85 Advanced Technology Use in Manufacturing Establishments, John R. Baldwin and Brent Diverty (November 1995)

No. 86 Technology Use, Training and Plant-Specific Knowledge in Manufacturing Establishments, John R. Baldwin, Tara Gray and Joanne Johnson (December 1995)

No. 87 Productivity Growth, Plant Turnover and Restructuring in the Canadian Manufacturing Sector, John \boldsymbol{R}. Baldwin (November 1995)

No. 88 Were Small Producers the Engines of Growth in the Canadian Manufacturing Sector in the 1980s?
John R. Baldwin (October 1996)
No. 89 The Intergenerational Income Mobility of Canadian Men, Miles Corak and Andrew Heisz (January 1996)
No. 90 The Evolution of Payroll Taxes in Canada: 1961-1993, Zhengxi Lin, Garnett Picot and Charles Beach (February 1996)

No. 91 Project on Matching Census 1986 Database and Manitoba Health Care Files: Private Households Component, Christian Houle, Jean-Marie Berthelot, Pierre David, Cam Mustard, L. Roos and M.C. Wolfson (March 1996)

No. 92 Technology-induced Wage Premia in Canadian Manufacturing Plants during the 1980s, John Baldwin, Tara Gray and Joanne Johnson (December 1996)

No. 93 Job Creation by Company Size Class: Concentration and Persistence of Job Gains and Losses in Canadian Companies, Garnett Picot and Richard Dupuy (April 1996)

No. 94 Longitudinal Aspects of Earnings Inequality in Canada, René Morissette and Charles Bérubé (July 1996)
No. 95 Changes in Job Tenure and Job Stability in Canada, Andrew Heisz (November 1996)
No. 96 Are Canadians More Likely to Lose Their Jobs in the 1990s?, Garnett Picot and Zhengxi Lin (August 6, 1997)
No. 97 Unemployment in the Stock and Flow, Michael Baker, Miles Corak and Andrew Heisz (September 1996)
No. 98 The Effect of Technology and Trade on Wage Differentials Between Nonproduction and Production Workers in Canadian Manufacturing, John R. Baldwin and Mohammed Rafiquzzaman (May 1998)

No. 99 Use of POHEM to Estimate Direct Medical Costs of Current Practice and New Treatments Associated with Lung Cancer in Canada, C. Houle, B.P. Will, J.-M. Berthelot, Dr. W.K. Evans (May 1997)

No. 100 An Experimental Canadian Survey That Links Workplace Practices and Employee Outcomes: Why it is Needed and How it Works, Garnett Picot, Ted Wannell (May 1997)

No. 101 Innovative Activity in Canadian Food Processing Establishments: The Importance of Engineering Practices, John Baldwin and David Sabourin (November 1999)

No. 102 Differences in Strategies and Performances of Different Types of Innovators, John R. Baldwin and Joanne Johnson (December 1997)

No. 103 Permanent Layoffs in Canada: Overview and Longitudinal Analysis, Garnett Picot, Zhengxi Lin and Wendy Pyper (September, 1997)

No. 104 Working More? Working Less? What do Canadian Workers Prefer?, Marie Drolet and René Morissette (May 20, 1997)

No. 105 Growth of Advanced Technology Use in Canadian Manufacturing During the 1990's, by John Baldwin, Ed Rama and David Sabourin (December 14, 1999)

No. 106 Job Turnover and Labour Market Adjustment in Ontario from 1978 to 1993, by Zhengxi Lin and Wendy Pyper (1997)

No. 107 The Importance of Research and Development for Innovation in Small and Large Canadian Manufacturing Firms, John R. Baldwin (September 24, 1997)

No. 108 International Competition and Industrial Performance: Allocative Efficiency, Productive Efficiency, and Turbulence, John R. Baldwin and Richard E. Caves (October 1997)

No. 109 The Dimensions of Wage Inequality among Aboriginal Peoples, Rachel Bernier (December 1997)
No. 110 Trickling Down or Fizzling Out? Economic Performance, Transfers, Inequality and Low Income, Myles Zyblock and Zhengxi Lin (December 10, 1997)

No. 111 Corporate Financial Leverage: A Canada - U.S. Comparison, 1961-1996, Myles Zyblock (December 1997)
No. 112 An explanation of the Increasing Age Premium, Constantine Kapsalis (July 1998)

No. 113 The Intergenerational Earnings and Income Mobility of Canadian Men: Evidence from Longitudinal Income Tax Data, Miles Corak and Andrew Heisz (October, 1998)

No. 114 Foreign-Born vs Native-Born Canadians: A Comparison of Their Inter-Provincial Labour Mobility, Zhengxi Lin (September 1998)

No. 115 Living Arrangements and Residential Overcrowding: the situation of older immigrants in Canada, 1991, K.G. Basavarajappa (September 1998)

No. 116 What is Happening to Earnings Inequality and Youth Wages in the 1990s?, Garnett Picot (July 1998)
No. 117 The Determinants of the Adoption Lag for Advanced Manufacturing Technologies, John R. Baldwin and Mohammed Rafiquzzaman (August 1998)

No. 118 Labour Productivity Differences Between Domestic and Foreign-Controlled Establishments in the Canadian Manufacturing Sector, John R. Baldwin and Naginder Dhaliwal (March 1, 2000)

No. 119 Technology Adoption: A Comparison Between Canada and the United States, John R. Baldwin and David Sabourin (August 1998)

No. 120 Are There High-Tech Industries or Only High-Tech Firms? Evidence From New TechnologyBased firms, John R. Baldwin and Guy Gellatly (December 1998)

No. 121 A Portrait of Entrants and Exits, John R. Baldwin (June 1999)
No. 122 Determinants of Innovative Activity in Canadian Manufacturing Firms: The Role of Intellectual Property Right, John R. Baldwin, Petr Hanel and David Sabourin (March 7, 2000)

No. 123 Innovation and Training in New Firms John R. Baldwin (November 2000)
No. 124 New Views on Inequality Trends in Canada and the United States, Michael C. Wolfson and Brian B. Murphy (August 1998 and October 1999 (paper)

No. 125 Employment Insurance in Canada: Recent Trends and Policy Changes, Zhengxi Lin (September 1998)
No. 126 Computers, Fax Machines and Wages in Canada: What Really Matters?, René Morissette and Marie Drolet (October 1998)

No. 127 Understanding the Innovation Process: Innovation in Dynamic Service Industries, Guy Gellatly and
Valerie Peters (December 1999)
No. 128 Recent Canadian Evidence on Job Quality by Firm Size, Marie Drolet and René Morissette (November 1998)

No. 129 Distribution, Inequality and Concentration of Income Among Older Immigrants in Canada, 1990, K. G Basavarajappa (April 1999)

No. 130 Earnings Dynamics and Inequality among Canadian Men, 1976-1992: Evidence from Longitudinal Income Tax Records, Michael Baker and Gary Solon (February 1999)

No 131 The Returns to Education, and the Increasing Wage Gap Between Younger and Older Workers, C. Kapsalis, R. Morissette and G. Picot (March 1999)

No. 132 Why Do Children Move Into and Out of Low Income: Changing Labour Market Conditions or Marriage and Divorce?, G. Picot, M. Zyblock and W. Pyper (March 1999)

No. 133 Rising Self-Employment in the Midst of High Unemployment: An Empirical Analysis of Recent Developments in Canada, Zhengxi Lin, Janice Yates and Garnett Picot (March 1999)

No. 134 The Entry and Exit Dynamics of Self-Employment in Canada, Zhengxi Lin, Garnett Picot and Janice Yates (March 1999)

No. 135 Death and Divorce: The Long-term Consequences of Parental Loss on Adolescents, Miles Corak (June 9, 1999)

No. 136 Cancelled

No. 137 Innovation, Training and Success, John Baldwin (October 1999)
No. 138 The Evolution of Pension Coverage of Young and Older Workers in Canada, René Morissette and Marie Drolet (December 1999)

No. 139 Import Competition and Market Power: Canadian Evidence, Aileen J. Thompson (April 2000)
No. 140 Gender Composition and Wages: Why is Canada Different from the United States, Michael Baker and Nicole Fortin (August 2000)

No. 141 The Transition to Work for Canadian University Graduates: Time to First Job, 1982-1990, Julian Betts, Christopher Ferrall and Ross Finnie (December 2000)

No. 142 Who Moves? A Panel Logit Model Analysis of Interprovincial Migration in Canada, Ross Finnie (August 2000)

No. 143 Differences in Innovator and Non-Innovator Profiles: Small Establishments in Business Services, Guy Gellatly (December 1999)

No. 144 Social Transfers, Earnings and Low-Income Intensity Among Canadian Children, 1981-1996: Highlighting Recent Development in Low-Income Measurement, John Myles and Garnett Picot (March 2000)

No. 145 How Much of Canada's Unemployment is Structural?, Lars Osberg and Zhengxi Lin (October 2000)
No. 146 To What Extent Are Canadians Exposed to Low-Income?, René Morissette and Marie Drolet (April, 2000)
No. 147 The Maturation of Canada's Retirement Income System: Income Levels, Income Inequality and Low-Income among the Elderly, John Myles (March 6, 2000)

No. 148 The Performance of the 1990s Canadian Labour Market, Garnett Picot and Andrew Heisz (April, 2000)
No. 149 Payroll Taxes in Canada Revisited: Structure, Statutory Parameters, and Recent Trends Zhengxi Lin (August, 2001)

No. 150 Patterns of Corporate Diversification in Canada: An Empirical Analysis, John R. Baldwin, Desmond Beckstead, Guy Gellatly and Alice Peters (June, 2000)

No. 151 Multinationals and the Canadian Innovation Process, John R. Baldwin and Petr Hanel (June, 2000)
No. 152 Rural Youth: Stayers, Leavers and Return Migrants, Richard Dupuy, Francine Mayer and René Morissette (September 5, 2000)

No. 153 Female Employment Rates and Labour Market Attachment in Rural Canada, Euan Phimster, Esperanza Vera Toscano, Alfons Weersink (December 2000)

No. 154 Training as a Human Resource Strategy: The Response to Staff Shortages and Technological Change, John R. Baldwin and Valerie Peters (April 2001)

No. 155 Job Tenure, Worker Mobility and the Youth Labour Market during the 1990s, G. Picot, A. Heisz and A. Nakamura (March 2001)

No. 156 The Impact of International Trade on the Wages of Canadians, Omar Zakhilwal (December 2000)
No. 157 The Persistent Gap: New Evidence on the Canadian Gender Wage Gap, Marie Drolet (December 2000)
No. 158 In Search of Intergenerational Credit Constraints Among Canadian Men: Quantile Versus Mean Regression Tests for Binding Crefdit Constraints, Nathan D. Grawe (December 2000)

No. 159 Intergenerational Influences on the Receipt of Unemployment Insurance in Canada and Sweden, Miles Corak, Bjorn Gustaffson and Torun Osterberg (December 2000)

No. 160 Neighbourhood Inequality in Canadian Cities, John Myles, Garnett Picot and Wendy Pyper (December 13, 2000)

No. 161 Cancelled

No. 162 The Evolution of Job Stability in Canada: Trends and Comparisons to U.S. Results, Andrew Heisz (October 16, 2002)

No. 163 The Effects of Inter-Provincial Mobility on Individuals' Earnings: Panel Model Estimates for Canada, Ross Finnie (October, 2001)

No. 164 Early Labour Market Outcomes of Recent Canadian University Graduates by Discipline: A Longitudinal, CrossCohort Analysis, Ross Finnie (March 2002)

No. 165 Innovation and Connectivity: The Nature of Market Linkages and Innovation Networks in Canadian Manufacturing Industries, John Baldwin and Alice Peters (May 2001)

No. 166 An Assessment of EI and SA Reporting in SLID, Constantine Kapsalis (August, 2001)
No. 167 Cancelled

No. 168 Enhancing Food Safety and Productivity: Technology Use in the Canadian Food Processing Industry, John R. Baldwin and David Sabourin (May 2002)

No. 169 Dynamics of the Canadian Manufacturing Sector in Metropolitan and Rural Regions, John R. Baldwin and Mark Brown with Tara Vinodrai (November 2001)

No. 170 Income Prospects of British Columbia University Graduates, Andrew Heisz (May 2001)
No. 171 Are the Kids All Right? Intergenerational Mobility and Child Well-being in Canada, Miles Corak (October 2001)

No. 172 Low-Income Intensity During the 1990s: The Role of Economic Growth, Employment Earnings and Social Transfers, G. Picot, R. Morissette, J. Myles (January 24, 2003)

No. 173 Impediments to Advanced Technology Adoption for Canadian Manufacturers, John Baldwin and Zhengxi Lin (August, 2001)

No. 174 Impact of the Adoption of Advanced Information and Communication Technologies on Firm Performance in the Canadian Manufacturing Sector, John R. Baldwin and David Sabourin (October, 2001)

No. 175 Skill Shortages and Advanced Technology Adoption, David Sabourin (September, 2001)
No. 176 Which Firms Have High Job Vacancy Rates in Canada?, René Morissette, Xuelin Zhang (October 25, 2001)
No. 177 A Tale of Three Cities: The Dynamics of Manufacturing in Toronto, Montreal and Vancouver, 1976-1997, Tara Vinodrai (November 2001)

No. 178 School Performance of the Children of Immigrants in Canada, 1994-98, Christopher Worswick (November 14, 2001)

No. 179 Changes in the Diversification of Canadian Manufacturing Firms (1973-1997): A Move to Specialization, John R. Baldwin, Desmond Beckstead and Richard Caves (February 2002)

No. 180 Differences in Interprovincial Productivity Levels, John R. Baldwin, Jean-Pierre Maynard, David Sabourin and Danielle Zietsma (December 2001)

No. 181 Does Parent or Child Know Best? An Assessment of Parent/Child Agreement in the Canadian National Longitudinal Survey of Children and Youth, Lori Curtis, Martin Dooley and Shelley Phipps (October 23, 2002)

No. 182 Effects of Selection Criteria and Economic Opportunities on the Characteristics of Immigrants, by Abdurrahman Aydemir (October 23, 2002)

No. 183 Setting up Shop: Self-Employment Amongst Canadian College and University Graduates, Ross Finnie, Christine Laporte, Maud-Catherine Rivard (March 2002)

No. 184 Winners and Losers in the Labour Market of the 1990s, Andrew Heisz, Andrew Jackson, Garnett Picot (February 2002)

No. 185 Do Neighbourhoods Influence Long Term Labour Market Success? A Comparison of Adults who Grew Up in Different Public Housing Projects, Philip Oreopoulos (June 2002)

No. 186 Wives, Mothers and Wages: Does Timing Matter? Marie Drolet (May 1, 2002)
No. 187 The Evolution of Wealth Inequality in Canada, 1984-1999, René Morissette, Xuelin Zhang and Marie Drolet (February 2002)

No. 188 Management Experience and Diversity in an Aging Organization, Ted Wannell and Martin Gravel (August 2002)

No. 189 The Importance of Entry to Canadian Manufacturing with an Appendix on Measurement Issues, John Baldwin, Desmond Beckstead and Andrée Girard (May 2002)

No. 190 Financing Innovation in New Small Firms: Evidence From Canada, John R,. Baldwin, Guy Gellatly and Valérie Gaudreault (May 2002)

No. 191 Too Far to Go On? Distance to School and University Participation, Marc Frenette (June 24, 2002)

No. 192 Life After Welfare: The Economic Well-Being of Welfare Leavers in Canada during the 1990s, Marc Frenette, Garnet Picot (March 26, 2003)

No. 193 Plant Turnover and Productivity Growth in Canadian Manufacuturing, John Baldwin, Wulong Gu (April 2, 2003)

No. 194 Wage Progression of Less Skilled Workers in Canada: Evidence from the SLID (1993-1998), Xuelin Zhang (December 6, 2002)

No. 195 Do the Falling Earnings of Immigrants Apply to Self-Employed Immigrants?, Marc Frenette (December 2002)
No. 196 Minorities, Cognitive Skills and the Incomes of Canadians, Ross Finnie and Ronald Meng (January 24, 2003)
No. 197 The Wealth Position of Immigrant Families in Canada, Xuelin Zhang (November 18, 2003)
No. 198 The Rise in Low-Income Rates Among Immigrants in Canada, Garnett Picot and Feng Hou (June 19, 2003)
No. 199 Alternative Work Practices and Quit Rates: Methodological Issues and Empirical Evidence For Canada, René Morissette and Julio Miguel Rosa (March 17, 2003)

No. 200 Cohort Effects in Annual Earnings by Field of Study Among British Columbia University Graduates, Andrew Heisz (September 26, 2003)

No. 201 Access to College and University: Does Distance Matter?, Marc Frenette (June 2003)
No. 202 Learning From Failure: Organizational Mortality and the Resource-Based View, S. Thornhill and R. Amit (August 8, 2003)

No. 203 Effects of Business Cycles on the Labour Market Assimilation of Immigrants, Abdurrahman Aydemir (July 31, 2003)

No. 204 Visible Minority Neighbourhood Enclaves and Labour Market Outcomes of Immigrants, Garnett Picot, Feng Hou (July 9, 2003)

No. 205 Changing Trade Barriers and Canadian Firms: Survival and Exit After the Canada-U.S. Free Trade Agreement, Jen Baggs (April 28, 2004)

No. 206 Neighbourhood Attainment and Residential Segregation Among Toronto's Visible Minorities, John Myles and Feng Hou (July 30, 2003)

No. 207 Life cycle bias in the estimation of intergenerational earnings persistence, Nathan Grawe (August 5, 2003)

No. 208 Are Investment Expectations Rational? by Chetan Dave (December 17, 2004)

No. 209 Working Hours in Canada and the United States, by Andrew Heisz and Sébastien LaRochelle-Côté (September 2003)

No. 210 Family Income and Participation in Post-Secondary Education, Miles Corak, Garth Lipps and John Zhao (October 1, 2003)

No.211-214 forthcoming
No. 215 Will They Ever Converge?: Earnings of Immigrant and Canadian-Born Workers over the Last Two Decades, Marc Frenette and René Morissette (October 8, 2003)

No. 216 How long do people live in low-income neighbourhoods? Marc Frenette Garnett Picot and Roger Sceviour (January 2004)

No. 217 Corporate Financial Leverage in Canadian Manufacturing: Consequences for Employment and Inventories, Andrew Heisz and Sébastien LaRochelle-Côté (February 2004)

No. 218 Have Permanent Layoff Rates Increased in Canada? René Morissette (March 25, 2004)
No. 219 Rising income inequality amid the economic recovery of the 1990s: An exploration of three data sources, Marc Frenette, David Green and Garnett Picot (July 9, 2004)

No. 219 REVISED: Rising Income Inequality in the 1990s: An Exploration of Three Data Sources
Marc Frenette, David Green and Garnett Picot (December 16, 2004)
No. 220 Factors Determining the Success or Failure of Canadian Establishments on Foreign Markets: A Survival Analysis Approach, Jean Bosco Sabuhoro and Yvan Gervais (May 5, 2004)

No. 221 Recent immigration and the formation of visible minority neighbourhoods in Canada's large cities, Feng Hou (July 2, 2004)

No. 222 The Deteriorating Economic Welfare of Immigrants and Possible Causes, Garnett Picot (July 15, 2004)
No. 223 The Retirement Plans and Expectations of Non-Retired Canadians Aged 45-59, Grant Schellenberg (June 29, 2004)

No. 224 Public Transit Use Among Immigrants, Andrew Heisz, Grant Schellenberg (May 13, 2004)
No. 225 Explaining the Deteriorating Entry Earnings of Canada's Immigrant Cohorts: 1966-2000, by Abdurrahman Aydemir and Mikal Skuterud (May 17, 2004)

No. 226 Family Background and Access to Post Secondary Education: What Happened over the 1990s?, Ross Finnie, Christine Laporte and Eric Lascelles (August 18, 2004)

No. 227 A Longitudinal Analysis of Earnings Change in Canada, Charles M. Beach and Ross Finnie (August 20, 2004)

No. 228 Neighbourhood Inequality, Relative Deprivation and Self-perceived Health Status, Feng Hou and John Myles (September 27, 2004)

No. 229 Population Movement Into and Out of Canada's Immigrant Gateway Cities: A Comparative Study of Toronto, Montreal and Vancouver, Feng Hou and Larry S. Bourne (September 13, 2004)

No. 230 Earnings of Couples with High and Low Levels of Education, 1980-2000, René Morissette et Anick Johnson (October 13, 2004)

No. 231 Welfare Dynamics in Canada: The Role of Individual Attributes and Economic-Policy Variables, Ross Finnie, Ian Irvine and Roger Sceviour (October 2004)

No. 232 Relative Wage Patterns among the Highly Educated in a Knowledge-based Economy, René Morissette, Yuri Ostrovsky and Garnett Picot (September 29, 2004)

No. 233 Postsecondary Field of Study and the Canadian Labour Market Outcomes of Immigrants and Non-Immigrants, Arthur Sweetman and Stephan McBride (October 28, 2004)

No. 234 Immigrant Source Country Educational Quality and Canadian Labour Market Outcomes, Arthur Sweetman (December 15, 2004).

No. 235 The Evolution of the Gender Earnings Gap Amongst Canadian University Graduates, Ross Finnie and Ted Wannell (November 30, 2004)

No. 236 The Importance of Signalling in Job Placement and Promotion, Andrew Heisz and Philip Oreopoulos (January 5, 2006)

No. 237 Who Goes? The Direct and Indirect Effects of Family Background on Access to Post-secondary Education, Ross Finnie, Eric Lascelles and Arthur Sweetman (January 18, 2005)

No. 238 The Decline of the Immigrant Homeownership Advantage: Life-Cycle, Declining Fortunes and Changing Housing Careers in Montreal, Toronto and Vancouver, 1981-2001 by Michael Haan (February 3, 2005)

No. 239 Are Good Jobs Disappearing in Canada? by René Morissette and Anick Johnson (January 26, 2005)
No. 240 Income Inequality and Low Income in Canada: An International Perspective, by Garnett Picot and John Myles (February 10, 2005)

No. 241 Ethnic Neighbourhoods and Male Immigrant Earnings Growth: 1981 through 1996, by Casey Warman (February 25, 2005)

No. 242 Making the Transition: The Impact of Moving from Elementary to Secondary School on Adolescents' Academic Achievement and Psychological Adjustment, by Garth Lipps (March 1, 2005)

No. 243 Participation in Post-secondary Education in Canada: Has the Role of Parental Income and Education Changed over the 1990 's? by Marie Drolet (February 15, 2005)

No. 244 Is Post-secondary Access More Equitable in Canada or the United States?, by Marc Frenette (March 15, 2005)

No. 245 Social Assistance Use in Canada: National and Provincial Trends in Incidence, Entry and Exit, by Ross Finnie, Ian Irvine, and Roger Sceviour (May 30, 2005)

No. 246 Summary of: Social Assistance Use in Canada: National and Provincial Trends in Incidence, Entry and Exit, by Ross Finnie, Ian Irvine, and Roger Sceviour (May 30, 2005) - Internet Only

No. 247 Intergenerational Impact of Immigrants' Selection and Assimilation on Health Outcomes of Children, by Nina Ahmed (April 15, 2005)

No. 248 Low-paid Work and Economically Vulnerable Families over the Last Two Decades, by René Morissette and Garnett Picot (April 25, 2005)

No. 249 Summary of: Low-paid Work and Economically Vulnerable Families over the Last Two Decades, by René Morissette and Garnett Picot (April 25, 2005) - Internet only

No. 250 Explaining the Increase in On-the-Job Search, by Mikal Skuterud (April 29, 2005)
No. 251 Canadian Compulsory School Laws and their Impact on Educational Attainment and Future Earnings, by Philip Oreopoulo (May 19, 2005)

No. 252 Are Immigrants Buying to Get In?: The Role of Ethnic Clustering on the Homeownership Propensities of 12 Toronto Immigrant Groups, 1996-2001 by Michael Haan (May 26, 2005)

No. 253 Summary of: Are Immigrants Buying to Get In?: The Role of Ethnic Clustering on the Homeownership Propensities of 12 Toronto Immigrant Groups, 1996-2001 by Michael Haan (May 26, 2005) - Internet only

No. 254 The Initial Destinations and Redistribution of Canada's Major Immigrant Groups: Changes over the Past Two Decades, by Feng Hou (June 29, 2005)

No. 255 Summary of: The Initial Destinations and Redistribution of Canada's Major Immigrant Groups: Changes over the Past Two Decades, by Feng Hou (June 29, 2005) - Internet only

No. 256 Trade Liberalization, Profitability, and Financial Leverage by Jen Baggs and James A.Brander (June 22, 2005)

No. 257 Summary of: Trade Liberalization, Profitability, and Financial Leverage by Jen Baggs and James A.Brander (June 22, 2005)- Internet only

No. 258 Tariff Reduction and Employment in Canadian Manufacturing, 1988-1994, by Sébastien LaRochelle-Côté (June 22, 2005)

No. 259 Summary of: Tariff Reduction and Employment in Canadian Manufacturing, 1988-1994, by Sébastien LaRochelle-Côté (June 22, 2005)- Internet only

No. 260 Firms, Industries, and Unemployment Insurance: An Analysis Using Employer-Employee Data from Canada, by Miles Corak and Wen-Hao Chen (June 30, 2005)

No. 261 All In the Family: A Simultaneous Model of Parenting Style and Child Conduct, by Peter Burton, Shelley

Phipps

 and Lori Curtis (August 2, 2005)No. 262 The Deteriorating Economic Welfare of Immigrants and Possible Causes: Update 2005, by Garnett Picot and Arthur Sweetman (June 27, 2005) - A revised version of Study No. 222, dated July 2004

No. 263 The Impact of Tuition Fees on University Access: Evidence from a Large-scale Price Deregulation in Professional Programs, by Marc Frenette (September 27, 2005)

No. 264 Summary of: The Impact of Tuition Fees on University Access: Evidence from a Large-scale Price Deregulation in Professional Programs, by Marc Frenette (September 27, 2005) - Internet only

No. 265 The Instability of Family Earnings and Family Income in Canada, 1986 to 1991 and 1996 to 2001, by René Morissette and Yuri Ostrovsky (November 2, 2005)

No. 266 Summary of: The Instability of Family Earnings and Family Income in Canada, 1986 to 1991 and 1996 to 2001, by René Morissette and Yuri Ostrovsky (November 2, 2005) - Internet only
No. 267 Intergenerational Earnings Mobility Among the Children of Canadian Immigrants, by Abdurraham Aydemir, Wen-Hao Chen and Miles Corak (October 25, 2005)

No. 268 The Impact of Macroeconomic Conditions on the Instability and Long-Run Inequality of Workers' Earnings in Canada, by Charles M. Beach, Ross Finnie and David Gray (February 7, 2006)

No. 269 Summary of: The Impact of Macroeconomic Conditions on the Instability and Long-Run Inequality of Workers' Earnings in Canada, by Charles M. Beach, Ross Finnie and David Gray (February 7, 2006) - internet only

No. 270 Differences in the Distribution of High School Achievement: The Role of Class Size and Time-in-term, by Miles Corak and Darren Lauzon (November 22, 2005)

No. 271 Mandatory Retirement Rules and Retirement Decisions of University Professors in Canada, by Christopher Worswick (December 5, 2005)

No. 272 Love and Money: Intergenerational Mobility and Marital Matching on Parental Income, by Jo Blanden (December 8, 2005)

No. 273 The New Migration: Global Labour Markets, Return and Onward Migration, by Abdurrahman Aydemir and Chris Robinson (March 1, 2006)

No. 274 Revisiting recent Trends in Canadian After-Tax Income Inequality Using Census Data, by Marc Frenette, David Green and Kevin Milligan (Febuary 27, 2006)

No. 275 The Importance of Functional Literacy: Reading and Math Skills and Labour Market Outcomes of High School Drop-outs, by Ross Finnie and Ronald Meng (March 27, 2006)

No. 276 Participation in Adult Schooling and its Earnings Impact in Canada, by Xuelin Zhang and Boris Palameta (March 24, 2006)

No. 277 Summary of: Participation in Adult Schooling and its Earnings Impact in Canada, by Xuelin Zhang and Boris Palameta (March 24, 2006) - internet only

No. 278 Work Hours Instability in Canada, by Andrew Heisz and Sébastien LaRochelle-Côté (March 29, 2006)
No. 279 Summary of: Work Hours Instability in Canada, by Andrew Heisz and Sébastien LaRochelle-Côté (March 29, 2006) - internet only

No. 280 Incentive Effects of Social Assistance: A Regression Discontinuity Approach, by Thomas Lemieux and Kevin Milligan (June 14, 2006)

No. 281 Income and the Outcomes of Children, by Shelley Phipps and Lynn Lethbridge (May 11, 2006)
No. 282 Why Did Employment and Earnings Rise Among Lone Mothers During the 1980s and 1990s? by John Myles, Feng Hou, Garnett Picot and Karen Myers (June 7, 2006)

No. 283 Forthcoming in January 2007
No. 284 National Data Sets: Sources of Information for Canadian Child Care Data, by Dafna E. Kohen, Barry Forer and Clyde Hertzman (June 19, 2006)

No. 285 Forthcoming
No. 286 Pension Coverage and Retirement Savings of Canadian Families, 1986 to 2003, by René Morissette and Yuri Ostrovsky (September 26, 2006)

No. 287 Product Market Competition and Agency Costs, by Jen Baggs and Jean-Etienne de Bettignies (December 4, 2006)

No. 288 International Mobility: Patterns of Exit and Return of Canadians, 1982 to 2003, by Ross Finnie (November 17, 2006)

No. 289 International Mobility: A Longitudinal Analysis of the Effects on Individuals' Earnings, by Ross Finnie (January 18, 2007)

No. 290 Forthcoming -
No. 291 Earnings Losses of Displaced Workers: Canadian Evidence from a Large Administrative Database on Firm Closures and Mass Layoffs, by René Morissette; Xuelin Zhang and Marc Frenette (January 16, 2007)

No. 292 Forthcoming
No. 293 Understanding Regional Differences in Work Hours, by Andrew Heisz and Sébastien LaRochelle-Côté (January 22, 2007)

[^0]: 1. Newfoundland and Labrador, Prince Edward Island, Nova Scotia and New Brunswick.
[^1]: 4. Including the federal government.
[^2]: 9. On account of the limited size of the sample, our demographic characteristics do not include the immigration status. This is potentially important because the share of foreign-born individuals is much larger in Ontario (and British Columbia) than in other regions. Differences due to the immigration status are therefore included in the unobservables. However, the relationship between immigrant status and work hours is not clear. While recent immigrants work fewer hours, older immigrants tend to work longer hours than their Canadian counterparts (Heisz and LaRochelle-Côté, 2006).
[^3]: Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

[^4]: Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

[^5]: Note: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
 Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

[^6]: Note: Missing observations for union status, industrial structure, job conditions or demographic characteristics are excluded. Weights for the remaining sample have been adjusted upwards proportionately to compensate.
 Source: Statistics Canada, 2004 Survey of Labour and Income Dynamics.

[^7]: 10. This discussion closely parallels that of Daly and Valetta (2004).
